Abstract

Miniaturized laser Doppler vibrometers (LDVs) have many advantages over conventional bulk LDVs. In this paper, the realization of a miniaturized heterodyne LDV integrated on silicon-on-insulator substrate is reported. The optical frequency shifters in these on-chip LDVs employ a serrodyne technique, and they generate a frequency shift at 2 kHz. Vibrations of a mirror for the frequency range between 1.1 and 123 Hz and the velocity range between 0.8 and 400μm/s are measured by both an on-chip LDV and a commercial LDV. The measurement results agree well. A compensation method for the influence of on-chip spurious reflections is also demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Toda, M. Haruna, and H. Nishihara, “Optical integrated circuit for a fiber laser Doppler velocimeter,” J. Lightwave Technol. 5, 901–905 (1987).
    [CrossRef]
  2. R. G. Brown, J. G. Burnett, J. Mansbridge, C. I. Moir, and B. S. Lowans, “Miniature, solid state photon correlation laser Doppler velocimetry,” Appl. Opt. 29, 3291–3302 (1990).
    [CrossRef]
  3. A. Campo and J. Dirckx, “Dual-beam laser Doppler vibrometer for measurement of pulse wave velocity in elastic vessels,” Proc. SPIE 8011, 80118Y (2011).
    [CrossRef]
  4. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
    [CrossRef]
  5. A. T. Waz, P. R. Kaczmarek, and K. M. Abramski, “Laser-fibre vibrometry at 1550 nm,” Meas. Sci. Technol. 20, 105301 (2009).
    [CrossRef]
  6. T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
    [CrossRef]
  7. Y. Li, S. Meersman, and R. Baets, “Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting,” Appl. Opt. 50, 2809–2814 (2011).
    [CrossRef]
  8. Y. Li, S. Meersman, and R. Baets, “Optical frequency shifter on SOI using thermo-optic serrodyne modulation,” Proceedings of 7th International Conference in Group IV Photonics (IEEE, 2010), p. P1.4.
  9. W. Green, M. Rooks, and L. Sekaric, “Ultra-compact, low RF power, 10  Gb/s silicon Mach–Zehnder modulator,” Opt. Express 15, 17106–17113 (2007).
    [CrossRef]
  10. S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III-V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
    [CrossRef]
  11. D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating coupling for silicon-on-insulator integrated circuits,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 74–76.
  12. Y. Li, D. Vermeulen, Y. De Koninck, G. Yurtsever, G. Roelkens, and R. Baets, “Compact grating couplers on silicon-on-insulator (SOI) with reduced back reflection,” Opt. Lett. 37, 4356–4358 (2012).
    [CrossRef]
  13. “OFV-534 Compact Sensor Head and OFV-5000 Modular Vibrometer Controller,” www.polytec.com .
  14. J. R. Carson, “Notes on the theory of modulation,” Proc. IRE 10, 57–64 (1922).
    [CrossRef]

2012 (3)

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
[CrossRef]

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III-V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[CrossRef]

Y. Li, D. Vermeulen, Y. De Koninck, G. Yurtsever, G. Roelkens, and R. Baets, “Compact grating couplers on silicon-on-insulator (SOI) with reduced back reflection,” Opt. Lett. 37, 4356–4358 (2012).
[CrossRef]

2011 (2)

Y. Li, S. Meersman, and R. Baets, “Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting,” Appl. Opt. 50, 2809–2814 (2011).
[CrossRef]

A. Campo and J. Dirckx, “Dual-beam laser Doppler vibrometer for measurement of pulse wave velocity in elastic vessels,” Proc. SPIE 8011, 80118Y (2011).
[CrossRef]

2009 (1)

A. T. Waz, P. R. Kaczmarek, and K. M. Abramski, “Laser-fibre vibrometry at 1550 nm,” Meas. Sci. Technol. 20, 105301 (2009).
[CrossRef]

2007 (1)

2005 (1)

1990 (1)

1987 (1)

H. Toda, M. Haruna, and H. Nishihara, “Optical integrated circuit for a fiber laser Doppler velocimeter,” J. Lightwave Technol. 5, 901–905 (1987).
[CrossRef]

1922 (1)

J. R. Carson, “Notes on the theory of modulation,” Proc. IRE 10, 57–64 (1922).
[CrossRef]

Abramski, K. M.

A. T. Waz, P. R. Kaczmarek, and K. M. Abramski, “Laser-fibre vibrometry at 1550 nm,” Meas. Sci. Technol. 20, 105301 (2009).
[CrossRef]

Baets, R.

Y. Li, D. Vermeulen, Y. De Koninck, G. Yurtsever, G. Roelkens, and R. Baets, “Compact grating couplers on silicon-on-insulator (SOI) with reduced back reflection,” Opt. Lett. 37, 4356–4358 (2012).
[CrossRef]

Y. Li, S. Meersman, and R. Baets, “Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting,” Appl. Opt. 50, 2809–2814 (2011).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

Y. Li, S. Meersman, and R. Baets, “Optical frequency shifter on SOI using thermo-optic serrodyne modulation,” Proceedings of 7th International Conference in Group IV Photonics (IEEE, 2010), p. P1.4.

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating coupling for silicon-on-insulator integrated circuits,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 74–76.

Beckx, S.

Bienstman, P.

Bogaerts, W.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating coupling for silicon-on-insulator integrated circuits,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 74–76.

Brown, R. G.

Burnett, J. G.

Campo, A.

A. Campo and J. Dirckx, “Dual-beam laser Doppler vibrometer for measurement of pulse wave velocity in elastic vessels,” Proc. SPIE 8011, 80118Y (2011).
[CrossRef]

Carson, J. R.

J. R. Carson, “Notes on the theory of modulation,” Proc. IRE 10, 57–64 (1922).
[CrossRef]

Charrett, T. O. H.

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
[CrossRef]

De Koninck, Y.

Y. Li, D. Vermeulen, Y. De Koninck, G. Yurtsever, G. Roelkens, and R. Baets, “Compact grating couplers on silicon-on-insulator (SOI) with reduced back reflection,” Opt. Lett. 37, 4356–4358 (2012).
[CrossRef]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating coupling for silicon-on-insulator integrated circuits,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 74–76.

Dirckx, J.

A. Campo and J. Dirckx, “Dual-beam laser Doppler vibrometer for measurement of pulse wave velocity in elastic vessels,” Proc. SPIE 8011, 80118Y (2011).
[CrossRef]

Dumon, P.

Green, W.

Haruna, M.

H. Toda, M. Haruna, and H. Nishihara, “Optical integrated circuit for a fiber laser Doppler velocimeter,” J. Lightwave Technol. 5, 901–905 (1987).
[CrossRef]

Heck, J. M.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III-V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[CrossRef]

James, S. W.

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
[CrossRef]

Jones, R.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III-V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[CrossRef]

Kaczmarek, P. R.

A. T. Waz, P. R. Kaczmarek, and K. M. Abramski, “Laser-fibre vibrometry at 1550 nm,” Meas. Sci. Technol. 20, 105301 (2009).
[CrossRef]

Lambert, E.

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating coupling for silicon-on-insulator integrated circuits,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 74–76.

Li, Y.

Y. Li, D. Vermeulen, Y. De Koninck, G. Yurtsever, G. Roelkens, and R. Baets, “Compact grating couplers on silicon-on-insulator (SOI) with reduced back reflection,” Opt. Lett. 37, 4356–4358 (2012).
[CrossRef]

Y. Li, S. Meersman, and R. Baets, “Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting,” Appl. Opt. 50, 2809–2814 (2011).
[CrossRef]

Y. Li, S. Meersman, and R. Baets, “Optical frequency shifter on SOI using thermo-optic serrodyne modulation,” Proceedings of 7th International Conference in Group IV Photonics (IEEE, 2010), p. P1.4.

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating coupling for silicon-on-insulator integrated circuits,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 74–76.

Lowans, B. S.

Luyssaert, B.

Mansbridge, J.

Meersman, S.

Y. Li, S. Meersman, and R. Baets, “Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting,” Appl. Opt. 50, 2809–2814 (2011).
[CrossRef]

Y. Li, S. Meersman, and R. Baets, “Optical frequency shifter on SOI using thermo-optic serrodyne modulation,” Proceedings of 7th International Conference in Group IV Photonics (IEEE, 2010), p. P1.4.

Moir, C. I.

Nishihara, H.

H. Toda, M. Haruna, and H. Nishihara, “Optical integrated circuit for a fiber laser Doppler velocimeter,” J. Lightwave Technol. 5, 901–905 (1987).
[CrossRef]

Roelkens, G.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III-V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[CrossRef]

Y. Li, D. Vermeulen, Y. De Koninck, G. Yurtsever, G. Roelkens, and R. Baets, “Compact grating couplers on silicon-on-insulator (SOI) with reduced back reflection,” Opt. Lett. 37, 4356–4358 (2012).
[CrossRef]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating coupling for silicon-on-insulator integrated circuits,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 74–76.

Rooks, M.

Sekaric, L.

Stankovic, S.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III-V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[CrossRef]

Sysak, M. N.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III-V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[CrossRef]

Taillaert, D.

Tatam, R. P.

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
[CrossRef]

Toda, H.

H. Toda, M. Haruna, and H. Nishihara, “Optical integrated circuit for a fiber laser Doppler velocimeter,” J. Lightwave Technol. 5, 901–905 (1987).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III-V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

Vermeulen, D.

Y. Li, D. Vermeulen, Y. De Koninck, G. Yurtsever, G. Roelkens, and R. Baets, “Compact grating couplers on silicon-on-insulator (SOI) with reduced back reflection,” Opt. Lett. 37, 4356–4358 (2012).
[CrossRef]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating coupling for silicon-on-insulator integrated circuits,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 74–76.

Waz, A. T.

A. T. Waz, P. R. Kaczmarek, and K. M. Abramski, “Laser-fibre vibrometry at 1550 nm,” Meas. Sci. Technol. 20, 105301 (2009).
[CrossRef]

Wiaux, V.

Yurtsever, G.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III-V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (2)

A. T. Waz, P. R. Kaczmarek, and K. M. Abramski, “Laser-fibre vibrometry at 1550 nm,” Meas. Sci. Technol. 20, 105301 (2009).
[CrossRef]

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. IRE (1)

J. R. Carson, “Notes on the theory of modulation,” Proc. IRE 10, 57–64 (1922).
[CrossRef]

Proc. SPIE (1)

A. Campo and J. Dirckx, “Dual-beam laser Doppler vibrometer for measurement of pulse wave velocity in elastic vessels,” Proc. SPIE 8011, 80118Y (2011).
[CrossRef]

Other (3)

Y. Li, S. Meersman, and R. Baets, “Optical frequency shifter on SOI using thermo-optic serrodyne modulation,” Proceedings of 7th International Conference in Group IV Photonics (IEEE, 2010), p. P1.4.

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating coupling for silicon-on-insulator integrated circuits,” in Proceedings of 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 74–76.

“OFV-534 Compact Sensor Head and OFV-5000 Modular Vibrometer Controller,” www.polytec.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Scanning electron microscopy image of the heater cross section.

Fig. 2.
Fig. 2.

Example of the square-root-of-time (SQOT) and sawtooth signals with a frequency at 1 Hz. When the voltage signal applied across the heater has a SQOT profile, the phase profile of the optical signal should be a sawtooth.

Fig. 3.
Fig. 3.

Different harmonic orders as a function of the peak-to-peak phase change (simulation results).

Fig. 4.
Fig. 4.

Measured relations between the power of different harmonics (fundamental and the second order) and the value of the frequency shift when a serrodyne technique is applied to our TO phase modulator.

Fig. 5.
Fig. 5.

PIC design and the setup used to measure mirror vibrations. A Michelson-type LDV PIC is shown in the box on the left side. PD, photodetector; PC, personal computer; and DAQ, data acquisition card.

Fig. 6.
Fig. 6.

Microscope images of the PIC. Images of the tilted grating coupler [11], 2×2 MMI coupler, and reflector are also shown.

Fig. 7.
Fig. 7.

(a) Influence of the spurious reflection on the demodulated results. In (b), the solid curve represents the original displacement signal and the dashed curve is for the demodulated displacement when a spurious reflection is mixed into the useful reflection signal. In this case the power ratio between the spurious reflection and the useful reflection is 30%, and the vibrating frequency is 22.6 Hz.

Fig. 8.
Fig. 8.

Simulated RMS deviations of the demodulated displacements versus spurious reflections with different power and phase values for the case when the power ratio between the spurious reflection and the useful reflection is 30%. The 36 solid curves represent 36 evenly spaced phases of the spurious reflection from 0 to 2π. The dashed lines are for the RMS deviation values with the spurious reflection compensation applied.

Fig. 9.
Fig. 9.

(a) I&Q curve when the phase profile is different from a perfect sawtooth and the corresponding displacement deviations. In (b), the solid curve represents the original displacement signal and the dashed curve is the demodulated displacement when the fall time of the phase sawtooth is not small enough. In this case, the ratio between the fall time and the period in the phase sawtooth is 30%.

Fig. 10.
Fig. 10.

Simulated RMS deviations of the demodulated displacements versus the ratio of the fall time in the imperfect-phase sawtooth in the reference signal. The 36 solid curves represent 36 evenly spaced phases of the reference signal from 0 to 2π.

Fig. 11.
Fig. 11.

Power spectral density of the frequency-shifted signal.

Fig. 12.
Fig. 12.

Demodulated displacements for on-chip LDV: the solid red curve stands for results measured with on-chip LDV, and the blue dashed curves are for results from Polytec LDV. Results in (a) are for the piezo vibration driven by a 50Vpp signal, while those in (b) are for the vibration driven by 100Vpp.

Fig. 13.
Fig. 13.

Response of the piezoelectric stack measured both by on-chip LDV (solid lines) and Polytec LDV (dashed lines). The peak-to-peak voltages of the piezo driver are chosen as 1, 3, 5, 10, 30, 50, and 100 V.

Fig. 14.
Fig. 14.

Power spectral density of the demodulated signal, when the piezo stack is driven by a 50Vpp signal at 22.6 Hz.

Fig. 15.
Fig. 15.

Power spectral density of environmental vibrations measured using LDV PIC with TO serrodyne frequency shift.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Eofs(t)=kμkexp[i2π(f0+k·fofs)t],
i(t)|α(t)·ej[2πf0t+θ(t)]+ej2π(f0+fofs)t|2=1+α2(t)+2α(t)cos[2πfofstθ(t)],
e=2|μ1μ1|/(|μ1|+|μ1|),
SNR=RPmPrq0B(Pr+Pm),

Metrics