Abstract

The theory of third-order aberrations for a system of rotationally symmetric thin tunable-focus fluidic membrane lenses with parabolic surfaces is described. A complex analysis of the third-order design of tunable fluidic lenses is performed considering all types of primary aberrations. Moreover, formulas are derived for the calculation of the change of aberration coefficients of the parabolic tunable fluidic membrane lens with respect to the wavelength. It is shown that spherical aberration of a simple tunable-focus fluidic membrane lens with parabolic surfaces can be corrected, which is not possible with a classical spherical lens. The presented analysis is explained on examples. Derived formulas make possible to calculate parameters of optical systems with fluidic membrane lenses with small residual aberrations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
    [CrossRef]
  2. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [CrossRef]
  3. B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
    [CrossRef]
  4. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  5. C.-X. Liu, J. Park, and J.-W. Choi, “A planar lens based on electrowetting of two immiscible liquids,” J. Micromech. Microeng. 18, 035023 (2008).
    [CrossRef]
  6. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
    [CrossRef]
  7. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
    [CrossRef]
  8. H. W. Ren and S.-T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16, 2646–2652 (2008).
    [CrossRef]
  9. X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93, 151101 (2008).
    [CrossRef]
  10. G. C. Knollman, J. L. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1971).
    [CrossRef]
  11. N. Sugiura and S. Morita, “Variable-focus liquid-filled optics lens,” Appl. Opt. 32, 4181–4186 (1993).
    [CrossRef]
  12. A. H. Rawicz and I. Mikhailenko, “Modeling a variable-focus liquid-filled optical lens,” Appl. Opt. 35, 1587–1589 (1996).
    [CrossRef]
  13. N. Chronis, G. Liu, K.-H. Jeong, and L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
    [CrossRef]
  14. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
    [CrossRef]
  15. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
    [CrossRef]
  16. M. Agarwall, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665–1673 (2004).
    [CrossRef]
  17. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1 kHz bandwidth,” Opt. Express 12, 2138–2149 (2004).
    [CrossRef]
  18. R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2005).
    [CrossRef]
  19. K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond response time,” Appl. Phys. Lett. 91, 171111 (2007).
    [CrossRef]
  20. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
    [CrossRef]
  21. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47, 3658–3668 (2008).
    [CrossRef]
  22. G.-H. Feng and Y.-C. Chou, “Flexible meniscus/biconvex lens system with fluidic-controlled tunable-focus applications,” Appl. Opt. 48, 3284–3290 (2009).
    [CrossRef]
  23. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
    [CrossRef]
  24. H. W. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
    [CrossRef]
  25. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
    [CrossRef]
  26. D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46, 123002 (2007).
    [CrossRef]
  27. D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46, 024002 (2007).
    [CrossRef]
  28. D. Shaw and C.-W. Lin, “Coma compensation of o-ring driven liquid-filled lenses,” Opt. Rev. 16, 129–132 (2009).
    [CrossRef]
  29. H. Choi, D. S. Han, and Y. H. Won, “Adaptive double-sided fluidic lens of polydimethylsiloxane membranes of matching thickness,” Opt. Lett. 36, 4701–4703 (2011).
    [CrossRef]
  30. R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686–703 (2005).
    [CrossRef]
  31. L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
    [CrossRef]
  32. L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012).
    [CrossRef]
  33. H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
    [CrossRef]
  34. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 728–731.
  35. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
    [CrossRef]
  36. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
    [CrossRef]
  37. Y.-K. Fuh, M.-X. Lin, and S. Lee, “Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,” Opt. Lasers Eng. 50, 1677–1682 (2012).
    [CrossRef]
  38. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  39. A. Miks, J. Novak, and P. Novak, “Third-order design of aspheric spectacle lenses,” Optik 121, 2097–2104 (2010).
    [CrossRef]
  40. H. H. Emsley, Aberrations of Thin Lenses (Constable & Co., 1956).
  41. A. Miks, “Modification of the formulas for third-order aberration coefficients,” J. Opt. Soc. Am. A 19, 1867–1871 (2002).
    [CrossRef]
  42. J. A. Diaz, “Primary aberrations of a thin lens with standard aspheres,” Proc. SPIE 5249, 599–607 (2003).
    [CrossRef]
  43. W. T. Welford, Aberrations of the Symmetrical Optical Systems (Academic, 1974).
  44. H. Coddington, A Treatise on the Reflexion and Refraction of Light (Cambridge, 1829).
  45. H. H. Hopkins, Wave Theory of Aberrations (Clarendon, 1950).
  46. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1964).
  47. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd. ed. (McGraw-Hill, 1970).
  48. D. Malacara, ed., Optical Shop Testing (Wiley-Interscience, 2007).
  49. http://www.dowcorning.com/ .
  50. http://www.gesilicones.com/ .
  51. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
    [CrossRef]
  52. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151, 95–99 (2009).
    [CrossRef]

2012 (2)

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012).
[CrossRef]

Y.-K. Fuh, M.-X. Lin, and S. Lee, “Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,” Opt. Lasers Eng. 50, 1677–1682 (2012).
[CrossRef]

2011 (3)

2010 (3)

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[CrossRef]

A. Miks, J. Novak, and P. Novak, “Third-order design of aspheric spectacle lenses,” Optik 121, 2097–2104 (2010).
[CrossRef]

G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
[CrossRef]

2009 (4)

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef]

G.-H. Feng and Y.-C. Chou, “Flexible meniscus/biconvex lens system with fluidic-controlled tunable-focus applications,” Appl. Opt. 48, 3284–3290 (2009).
[CrossRef]

D. Shaw and C.-W. Lin, “Coma compensation of o-ring driven liquid-filled lenses,” Opt. Rev. 16, 129–132 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151, 95–99 (2009).
[CrossRef]

2008 (5)

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47, 3658–3668 (2008).
[CrossRef]

C.-X. Liu, J. Park, and J.-W. Choi, “A planar lens based on electrowetting of two immiscible liquids,” J. Micromech. Microeng. 18, 035023 (2008).
[CrossRef]

H. W. Ren and S.-T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16, 2646–2652 (2008).
[CrossRef]

X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93, 151101 (2008).
[CrossRef]

2007 (6)

S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
[CrossRef]

D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46, 123002 (2007).
[CrossRef]

D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46, 024002 (2007).
[CrossRef]

H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[CrossRef]

K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond response time,” Appl. Phys. Lett. 91, 171111 (2007).
[CrossRef]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

2006 (1)

2005 (3)

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686–703 (2005).
[CrossRef]

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[CrossRef]

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2005).
[CrossRef]

2004 (5)

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef]

M. Agarwall, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665–1673 (2004).
[CrossRef]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1 kHz bandwidth,” Opt. Express 12, 2138–2149 (2004).
[CrossRef]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

2003 (3)

N. Chronis, G. Liu, K.-H. Jeong, and L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

J. A. Diaz, “Primary aberrations of a thin lens with standard aspheres,” Proc. SPIE 5249, 599–607 (2003).
[CrossRef]

2002 (1)

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

1996 (1)

1993 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

1971 (1)

G. C. Knollman, J. L. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1971).
[CrossRef]

Agarwal, M.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686–703 (2005).
[CrossRef]

Agarwall, M.

M. Agarwall, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665–1673 (2004).
[CrossRef]

Anderson, P. A.

Bellin, J. L.

G. C. Knollman, J. L. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1971).
[CrossRef]

Berdichevsky, Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Campbell, K.

K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond response time,” Appl. Phys. Lett. 91, 171111 (2007).
[CrossRef]

Chau, F. S.

Choi, H.

Choi, J.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Choi, J.-W.

C.-X. Liu, J. Park, and J.-W. Choi, “A planar lens based on electrowetting of two immiscible liquids,” J. Micromech. Microeng. 18, 035023 (2008).
[CrossRef]

Chou, Y.-C.

Christian, W.

Chronis, N.

Coane, P.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686–703 (2005).
[CrossRef]

M. Agarwall, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665–1673 (2004).
[CrossRef]

Coddington, H.

H. Coddington, A Treatise on the Reflexion and Refraction of Light (Cambridge, 1829).

Diaz, J. A.

J. A. Diaz, “Primary aberrations of a thin lens with standard aspheres,” Proc. SPIE 5249, 599–607 (2003).
[CrossRef]

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151, 95–99 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef]

Dubasi, P.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686–703 (2005).
[CrossRef]

Emsley, H. H.

H. H. Emsley, Aberrations of Thin Lenses (Constable & Co., 1956).

Fainman, Y.

K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond response time,” Appl. Phys. Lett. 91, 171111 (2007).
[CrossRef]

Fan, Y. H.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

Fellner, T.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

Feng, G.-H.

Fox, D.

Fuh, Y.-K.

Y.-K. Fuh, M.-X. Lin, and S. Lee, “Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,” Opt. Lasers Eng. 50, 1677–1682 (2012).
[CrossRef]

Gauza, S.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

Goodier, J. N.

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd. ed. (McGraw-Hill, 1970).

Groisman, A.

K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond response time,” Appl. Phys. Lett. 91, 171111 (2007).
[CrossRef]

Gunasekaran, R. A.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686–703 (2005).
[CrossRef]

M. Agarwall, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665–1673 (2004).
[CrossRef]

Han, D. S.

Hashimoto, K.

Hendriks, B. H. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Hopkins, H. H.

H. H. Hopkins, Wave Theory of Aberrations (Clarendon, 1950).

Ishikawa, M.

Jeong, K.-H.

Jiang, H.

X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93, 151101 (2008).
[CrossRef]

Jiang, W.

L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
[CrossRef]

Justis, N.

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151, 95–99 (2009).
[CrossRef]

Knollman, G. C.

G. C. Knollman, J. L. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1971).
[CrossRef]

Kobrin, P.

Kuiper, S.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Kuwano, R.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2005).
[CrossRef]

Lee, L.

Lee, S.

Y.-K. Fuh, M.-X. Lin, and S. Lee, “Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,” Opt. Lasers Eng. 50, 1677–1682 (2012).
[CrossRef]

Lee, S. S.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lee, S. W.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Leung, H. M.

Li, G.

G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
[CrossRef]

Li, L.

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012).
[CrossRef]

L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
[CrossRef]

Liebetraut, P.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 728–731.

Lien, V.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Lin, C.-W.

D. Shaw and C.-W. Lin, “Coma compensation of o-ring driven liquid-filled lenses,” Opt. Rev. 16, 129–132 (2009).
[CrossRef]

D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46, 123002 (2007).
[CrossRef]

Lin, M.-X.

Y.-K. Fuh, M.-X. Lin, and S. Lee, “Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,” Opt. Lasers Eng. 50, 1677–1682 (2012).
[CrossRef]

Liu, C.-X.

C.-X. Liu, J. Park, and J.-W. Choi, “A planar lens based on electrowetting of two immiscible liquids,” J. Micromech. Microeng. 18, 035023 (2008).
[CrossRef]

Liu, G.

Lo, Y. H.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Lo, Y.-H.

Mader, D.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 728–731.

Mikhailenko, I.

Miks, A.

A. Miks, J. Novak, and P. Novak, “Third-order design of aspheric spectacle lenses,” Optik 121, 2097–2104 (2010).
[CrossRef]

A. Miks, “Modification of the formulas for third-order aberration coefficients,” J. Opt. Soc. Am. A 19, 1867–1871 (2002).
[CrossRef]

Morita, S.

Narayanaswamy, S.

Novak, J.

A. Miks, J. Novak, and P. Novak, “Third-order design of aspheric spectacle lenses,” Optik 121, 2097–2104 (2010).
[CrossRef]

Novak, P.

A. Miks, J. Novak, and P. Novak, “Third-order design of aspheric spectacle lenses,” Optik 121, 2097–2104 (2010).
[CrossRef]

Oku, H.

Otani, Y.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2005).
[CrossRef]

Park, J.

C.-X. Liu, J. Park, and J.-W. Choi, “A planar lens based on electrowetting of two immiscible liquids,” J. Micromech. Microeng. 18, 035023 (2008).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Rawicz, A. H.

Reichelt, S.

Ren, H. W.

Renders, C. A.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[CrossRef]

Sato, S.

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151, 95–99 (2009).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

Seabury, C.

Seifert, A.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 728–731.

Shaw, D.

D. Shaw and C.-W. Lin, “Coma compensation of o-ring driven liquid-filled lenses,” Opt. Rev. 16, 129–132 (2009).
[CrossRef]

D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46, 123002 (2007).
[CrossRef]

D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46, 024002 (2007).
[CrossRef]

Singh, A.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686–703 (2005).
[CrossRef]

Sugiura, N.

Sun, T. E.

D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46, 024002 (2007).
[CrossRef]

Timoshenko, S. P.

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd. ed. (McGraw-Hill, 1970).

S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1964).

Tokunaga, T.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2005).
[CrossRef]

Tukker, T. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[CrossRef]

Umeda, N.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2005).
[CrossRef]

Van As, M. A. J.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[CrossRef]

Varahramyan, K.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686–703 (2005).
[CrossRef]

M. Agarwall, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665–1673 (2004).
[CrossRef]

Waibel, P.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 728–731.

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151, 95–99 (2009).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

Wang, Q. H.

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012).
[CrossRef]

L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
[CrossRef]

Weaver, J. L.

G. C. Knollman, J. L. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1971).
[CrossRef]

Welford, W. T.

W. T. Welford, Aberrations of the Symmetrical Optical Systems (Academic, 1974).

Wilde, J.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

Woinowsky-Krieger, S.

S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1964).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Won, Y. H.

Wu, B.

Wu, S. T.

Wu, S.-T.

Yang, Q.

Yu, H.

Zappe, H.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
[CrossRef]

S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 728–731.

Zeng, X.

X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93, 151101 (2008).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Zhou, G.

Appl. Opt. (5)

Appl. Phys. Lett. (6)

K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond response time,” Appl. Phys. Lett. 91, 171111 (2007).
[CrossRef]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93, 151101 (2008).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

J. Acoust. Soc. Am. (1)

G. C. Knollman, J. L. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1971).
[CrossRef]

J. Micromech. Microeng. (3)

C.-X. Liu, J. Park, and J.-W. Choi, “A planar lens based on electrowetting of two immiscible liquids,” J. Micromech. Microeng. 18, 035023 (2008).
[CrossRef]

M. Agarwall, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665–1673 (2004).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

J. Opt. (1)

L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Opt. Eng. (3)

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012).
[CrossRef]

D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46, 123002 (2007).
[CrossRef]

D. Shaw and T. E. Sun, “Optical properties of variable-focus liquid-filled optical lenses with different membrane shapes,” Opt. Eng. 46, 024002 (2007).
[CrossRef]

Opt. Express (9)

Opt. Lasers Eng. (2)

Y.-K. Fuh, M.-X. Lin, and S. Lee, “Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,” Opt. Lasers Eng. 50, 1677–1682 (2012).
[CrossRef]

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686–703 (2005).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (3)

D. Shaw and C.-W. Lin, “Coma compensation of o-ring driven liquid-filled lenses,” Opt. Rev. 16, 129–132 (2009).
[CrossRef]

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2005).
[CrossRef]

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[CrossRef]

Optik (1)

A. Miks, J. Novak, and P. Novak, “Third-order design of aspheric spectacle lenses,” Optik 121, 2097–2104 (2010).
[CrossRef]

Proc. SPIE (1)

J. A. Diaz, “Primary aberrations of a thin lens with standard aspheres,” Proc. SPIE 5249, 599–607 (2003).
[CrossRef]

Prog. Opt. (1)

G. Li, “Adaptive lens,” Prog. Opt. 55, 199–283 (2010).
[CrossRef]

Sens. Actuators A (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151, 95–99 (2009).
[CrossRef]

Other (11)

H. H. Emsley, Aberrations of Thin Lenses (Constable & Co., 1956).

W. T. Welford, Aberrations of the Symmetrical Optical Systems (Academic, 1974).

H. Coddington, A Treatise on the Reflexion and Refraction of Light (Cambridge, 1829).

H. H. Hopkins, Wave Theory of Aberrations (Clarendon, 1950).

S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1964).

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd. ed. (McGraw-Hill, 1970).

D. Malacara, ed., Optical Shop Testing (Wiley-Interscience, 2007).

http://www.dowcorning.com/ .

http://www.gesilicones.com/ .

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 728–731.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Dependence of shape factor on transverse magnification (n=1.333) for zero spherical aberration.

Fig. 2.
Fig. 2.

Wave aberration W/λ and PSF of tunable-focus fluidic membrane lens (computed in OSLO software).

Fig. 3.
Fig. 3.

Wave aberration W/λ of simple spherical lens with minimum spherical aberration.

Fig. 4.
Fig. 4.

Aberrations of optical system composed from tunable-focus fluidic membrane lens and classical spherical lens (computed in OSLO software).

Fig. 5.
Fig. 5.

PSF of optical system composed from tunable-focus fluidic membrane lens and classical spherical lens (computed in OSLO software).

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

1s1s=1f=φ,
φ=(n1)(1r1r),
m=ss=11+sφ.
X=r+rrr.
Y=s+sss=m+1m1=12sφ=12sφ,m=Y+1Y1.
r=2(n1)φ(X+1),r=2(n1)φ(X1).
(d2dρ2+1ρddρ)(d2wdρ2+1ρdwdρ)=p(ρ)D,D=Et312(1μ2),
w|ρ=R=0,dwdr|ρ=R=0,
w=p64D[(R2ρ2)2+4t21μ(R2ρ2)]=w4ρ4+w2ρ2+w0,
w4=p64D,w2=p64D(2R2+4t21μ),w0=p64D(R2+4t21μ)R2.
w=w0+ρ22rC+(1+b)ρ48rC3,
rC=12w2,b=w4w231.
rC=16DpR2=4E3pR2(1μ2)t3,b=12[4E3p(1μ2)]2(tR)6,
w/t=8(C1ξ2/2+C3ξ4/4+C5ξ6/6+),
w=p4T(R2ρ2),
φ=(n1)(1r1r)+(n1)2nrrd=(n1)(1r1r)(1+(n1)D028nrr)+(n1)2nrrdk,
d=dk+D028rD028r.
φm=(nm1)(1r1r+t)(nm1)tr2.
SIasf=i=1Khi4(Mi+δMi),
SIIasf=i=1Khi3h¯i(Mi+δMi)+i=1Khi2Ni,
SIIIasf=i=1Khi2h¯i2(Mi+δMi)+2i=1Khih¯iNi+i=1Kφi,
SIVasf=i=1Kφini,
SVasf=i=1Khih¯i3(Mi+δMi)+3i=1Kh¯i2Ni+i=1Kh¯ihi(3+1ni)φi,
Mi=φi3(AiXi2+BiXiYi+CiYi2+Di),Ni=φi2(EiXi+FiYi),δMi=Xi3αi+3Xi2βi+3Xiαi+βi,
αi=φi3(bibi)8(ni1)2,βi=φi3(bi+bi)8(ni1)2.
δMi=φi34(ni1)2(3Xi2+1).
Ai=ni+24ni(ni1)2,Bi=ni+1ni(ni1),Ci=3ni+24ni,Di=ni24(ni1)2,Ei=Bi/2,Fi=2ni+12ni,φi=(ni1)(1ri1ri)=1si1si,Yi=si+sisisi=mi+1mi1=12siφi=12siφi,Yi+1=hiφihi+1φi+1(Yi1)1,
ri=2(ni1)φi(Xi+1),ri=2(ni1)φi(Xi1).
h¯jhj=h¯1h1+i=2jdi1hi1hi,
h¯1=s1s¯1s¯1s1.
SI0=h4φ3[12n(1n)X2+n+1n(n1)XY+3n+24nY2+n+14(n1)],SII0=h2φ2[n+12n(n1)X+2n+12nY],SIII0=φ,SIV0=φ/n,SV0=0.
SI=SI0,SII=(h¯h)SI0+SII0,SIII=(h¯h)2SI0+2(h¯h)SII0+SIII0,SIV=SIV0,SV=(h¯h)3SI0+3(h¯h)2SII0+(h¯h)(3SIII0+SIV0),
X=Y(n+1)±nY2(5n+3)+n+12n.
X=0.7574n+1.4861,X=2.7574n+0.5139.
δSI0=h4φ3ν[3(Y1)24(X+1)22(1+XY)n1+(XY)22n2+(XY)(X+1)n],
δSII0=h2φ22ν[2(Y1)+XY+n2(X1)+n(Y+1)n2(n1)],δSIII0=φν,δSIV0=φn2ν,δSV0=0.

Metrics