Abstract

The sea and land surface temperature radiometer (SLSTR) is a nine-channel visible and infrared high-precision radiometer designed to provide climate data of global sea and land surface temperatures. The SLSTR payload is destined to fly on the Ocean and Medium-Resolution Land Mission for the ESA/EU global monitoring for environment and security (GMES) programme Sentinel-3 mission to measure the sea and land temperature and topography for near real-time environmental and atmospheric climate monitoring of the Earth. In this paper we describe the optical layout of infrared optics in the instrument, the spectral thin-film multilayer design, and the system channel throughput analysis for the combined interference filter and dichroic beam splitter coatings to discriminate wavelengths at 3.74, 10.85, 12.0 μm. The rationale for selection of thin-film materials, the deposition technique, and environmental testing, inclusive of humidity, thermal cycling, and ionizing radiation testing are also described.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, and H. Tait, “AATSR: global-change and surface temperature measurements from Envisat,” ESA Bulletin 105, 11–21 (2001).
  2. R. Hunneman and G. Hawkins, “Infrared filters and dichroics for the advanced along-track scanning radiometer,” Appl. Opt. 35, 5524–5528 (1996).
    [CrossRef]
  3. P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
    [CrossRef]
  4. P. Coppo, M. Stagi, T. Hennig, and J. Delderfield, “The Sea & Land Surface Temperature Radiometer (SLSTR) technologies,” presented at the 61st International Astronautical Congress (IAC10), Earth Observation Symposium, session on Earth Observation Sensors & Technologies, Czech Republic (2010), paper IAC-10-B.1.3.4.
  5. C. R. Pidgeon and S. D. Smith, “Resolving power of multilayer filters in nonparallel light,” J. Opt. Soc. Am. A 54, 1459–1466 (1964).
    [CrossRef]
  6. J. S. Seeley, R. Hunneman, and A. Whatley, “Far infrared filters for the Galileo-Jupiter and other missions,” Appl. Opt. 20, 31–39 (1981).
    [CrossRef]
  7. M. E. Lasser and H. Levinstein, “Optical properties of lead telluride,” Phys. Rev. 96, 47–52 (1954).
    [CrossRef]
  8. K. Zhang, J. S. Seeley, R. Hunneman, and G. J. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).
    [CrossRef]
  9. G. Hass and C. D. Salzberg, “Optical properties of silicon monoxide in the wavelength region from 0.24 to 14.0 microns,” J. Opt. Soc. Am. 44, 181–187 (1954).
    [CrossRef]
  10. A. Hjortsberg and C. G. Granqvist, “Infrared optical properties of silicon monoxide films,” Appl. Opt. 19, 1694–1696 (1980).
    [CrossRef]
  11. J. S. Seeley, H. M. Liddell, and T. C. Chen, “Extraction of Tschebysheff design data for the lowpass dielectric multilayer,” Opt. Acta 20, 641–661 (1973).
    [CrossRef]
  12. M. C. Ohmer, “Design of three-layer equivalent films,” J. Opt. Soc. Am. 68, 137–139 (1978).
    [CrossRef]
  13. G. J. Hawkins and R. Hunneman, “A spectral performance model for the High Resolution Dynamics Limb Sounder (6–18 μm),” Infrared Phys. Technol. 41, 239–246 (2000).
    [CrossRef]
  14. G. J. Hawkins, “Spectral characterisation of infrared optical materials and filters,” Ph.D. thesis (University of Reading, 1999).
  15. C. S. Evans, R. Hunneman, J. S. Seeley, and A. Whatley, “Filters for the ν2 band of CO2: monitoring and control of layer deposition,” Appl. Opt. 15, 2736–2745 (1976).
    [CrossRef]
  16. R. Hunneman, R. Sherwood, C. Deeley, and R. Spragg, “Achieving accurate FTIR measurements on high performance bandpass filters” in Eleventh International Conference on Fourier Transform Spectroscopy (American Institute of Physics, 1997), pp. 435–438.
  17. A. S. Filler, “Apodization and interpolation in Fourier-transform spectroscopy,” J. Opt. Soc. Am. 54, 762–764 (1964).
    [CrossRef]
  18. C. Cole, “Broadband antireflection coatings for spaceflight optics,” Ph.D. thesis (University of Reading, 1995).

2010

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

2001

D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, and H. Tait, “AATSR: global-change and surface temperature measurements from Envisat,” ESA Bulletin 105, 11–21 (2001).

2000

G. J. Hawkins and R. Hunneman, “A spectral performance model for the High Resolution Dynamics Limb Sounder (6–18 μm),” Infrared Phys. Technol. 41, 239–246 (2000).
[CrossRef]

1996

1989

K. Zhang, J. S. Seeley, R. Hunneman, and G. J. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).
[CrossRef]

1981

1980

1978

1976

1973

J. S. Seeley, H. M. Liddell, and T. C. Chen, “Extraction of Tschebysheff design data for the lowpass dielectric multilayer,” Opt. Acta 20, 641–661 (1973).
[CrossRef]

1964

C. R. Pidgeon and S. D. Smith, “Resolving power of multilayer filters in nonparallel light,” J. Opt. Soc. Am. A 54, 1459–1466 (1964).
[CrossRef]

A. S. Filler, “Apodization and interpolation in Fourier-transform spectroscopy,” J. Opt. Soc. Am. 54, 762–764 (1964).
[CrossRef]

1954

Barton, I. J.

D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, and H. Tait, “AATSR: global-change and surface temperature measurements from Envisat,” ESA Bulletin 105, 11–21 (2001).

Bianchi, S.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Birks, A. R.

D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, and H. Tait, “AATSR: global-change and surface temperature measurements from Envisat,” ESA Bulletin 105, 11–21 (2001).

Brandani, F.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Chen, T. C.

J. S. Seeley, H. M. Liddell, and T. C. Chen, “Extraction of Tschebysheff design data for the lowpass dielectric multilayer,” Opt. Acta 20, 641–661 (1973).
[CrossRef]

Cole, C.

C. Cole, “Broadband antireflection coatings for spaceflight optics,” Ph.D. thesis (University of Reading, 1995).

Coppo, P.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

P. Coppo, M. Stagi, T. Hennig, and J. Delderfield, “The Sea & Land Surface Temperature Radiometer (SLSTR) technologies,” presented at the 61st International Astronautical Congress (IAC10), Earth Observation Symposium, session on Earth Observation Sensors & Technologies, Czech Republic (2010), paper IAC-10-B.1.3.4.

Deeley, C.

R. Hunneman, R. Sherwood, C. Deeley, and R. Spragg, “Achieving accurate FTIR measurements on high performance bandpass filters” in Eleventh International Conference on Fourier Transform Spectroscopy (American Institute of Physics, 1997), pp. 435–438.

Delderfield, J.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

P. Coppo, M. Stagi, T. Hennig, and J. Delderfield, “The Sea & Land Surface Temperature Radiometer (SLSTR) technologies,” presented at the 61st International Astronautical Congress (IAC10), Earth Observation Symposium, session on Earth Observation Sensors & Technologies, Czech Republic (2010), paper IAC-10-B.1.3.4.

Edwards, M. C.

D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, and H. Tait, “AATSR: global-change and surface temperature measurements from Envisat,” ESA Bulletin 105, 11–21 (2001).

Engel, W.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Evans, C. S.

Ferlet, M.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Filler, A. S.

Frerick, J.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Granqvist, C. G.

Hass, G.

Hawkins, G.

Hawkins, G. J.

G. J. Hawkins and R. Hunneman, “A spectral performance model for the High Resolution Dynamics Limb Sounder (6–18 μm),” Infrared Phys. Technol. 41, 239–246 (2000).
[CrossRef]

K. Zhang, J. S. Seeley, R. Hunneman, and G. J. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).
[CrossRef]

G. J. Hawkins, “Spectral characterisation of infrared optical materials and filters,” Ph.D. thesis (University of Reading, 1999).

Hennig, T.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

P. Coppo, M. Stagi, T. Hennig, and J. Delderfield, “The Sea & Land Surface Temperature Radiometer (SLSTR) technologies,” presented at the 61st International Astronautical Congress (IAC10), Earth Observation Symposium, session on Earth Observation Sensors & Technologies, Czech Republic (2010), paper IAC-10-B.1.3.4.

Hjortsberg, A.

Hunneman, R.

G. J. Hawkins and R. Hunneman, “A spectral performance model for the High Resolution Dynamics Limb Sounder (6–18 μm),” Infrared Phys. Technol. 41, 239–246 (2000).
[CrossRef]

R. Hunneman and G. Hawkins, “Infrared filters and dichroics for the advanced along-track scanning radiometer,” Appl. Opt. 35, 5524–5528 (1996).
[CrossRef]

K. Zhang, J. S. Seeley, R. Hunneman, and G. J. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).
[CrossRef]

J. S. Seeley, R. Hunneman, and A. Whatley, “Far infrared filters for the Galileo-Jupiter and other missions,” Appl. Opt. 20, 31–39 (1981).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, and A. Whatley, “Filters for the ν2 band of CO2: monitoring and control of layer deposition,” Appl. Opt. 15, 2736–2745 (1976).
[CrossRef]

R. Hunneman, R. Sherwood, C. Deeley, and R. Spragg, “Achieving accurate FTIR measurements on high performance bandpass filters” in Eleventh International Conference on Fourier Transform Spectroscopy (American Institute of Physics, 1997), pp. 435–438.

Kirschstein, S.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Lasser, M. E.

M. E. Lasser and H. Levinstein, “Optical properties of lead telluride,” Phys. Rev. 96, 47–52 (1954).
[CrossRef]

Levinstein, H.

M. E. Lasser and H. Levinstein, “Optical properties of lead telluride,” Phys. Rev. 96, 47–52 (1954).
[CrossRef]

Liddell, H. M.

J. S. Seeley, H. M. Liddell, and T. C. Chen, “Extraction of Tschebysheff design data for the lowpass dielectric multilayer,” Opt. Acta 20, 641–661 (1973).
[CrossRef]

Llewellyn-Jones, D.

D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, and H. Tait, “AATSR: global-change and surface temperature measurements from Envisat,” ESA Bulletin 105, 11–21 (2001).

Munro, G.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Mutlow, C.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Mutlow, C. T.

D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, and H. Tait, “AATSR: global-change and surface temperature measurements from Envisat,” ESA Bulletin 105, 11–21 (2001).

Nicol, P.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Nieke, J.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Nightingale, T.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Ohmer, M. C.

Pidgeon, C. R.

C. R. Pidgeon and S. D. Smith, “Resolving power of multilayer filters in nonparallel light,” J. Opt. Soc. Am. A 54, 1459–1466 (1964).
[CrossRef]

Ricciarelli, B.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Salzberg, C. D.

Seeley, J. S.

K. Zhang, J. S. Seeley, R. Hunneman, and G. J. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).
[CrossRef]

J. S. Seeley, R. Hunneman, and A. Whatley, “Far infrared filters for the Galileo-Jupiter and other missions,” Appl. Opt. 20, 31–39 (1981).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, and A. Whatley, “Filters for the ν2 band of CO2: monitoring and control of layer deposition,” Appl. Opt. 15, 2736–2745 (1976).
[CrossRef]

J. S. Seeley, H. M. Liddell, and T. C. Chen, “Extraction of Tschebysheff design data for the lowpass dielectric multilayer,” Opt. Acta 20, 641–661 (1973).
[CrossRef]

Sherwood, R.

R. Hunneman, R. Sherwood, C. Deeley, and R. Spragg, “Achieving accurate FTIR measurements on high performance bandpass filters” in Eleventh International Conference on Fourier Transform Spectroscopy (American Institute of Physics, 1997), pp. 435–438.

Smith, D.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

Smith, S. D.

C. R. Pidgeon and S. D. Smith, “Resolving power of multilayer filters in nonparallel light,” J. Opt. Soc. Am. A 54, 1459–1466 (1964).
[CrossRef]

Spragg, R.

R. Hunneman, R. Sherwood, C. Deeley, and R. Spragg, “Achieving accurate FTIR measurements on high performance bandpass filters” in Eleventh International Conference on Fourier Transform Spectroscopy (American Institute of Physics, 1997), pp. 435–438.

Stagi, M.

P. Coppo, M. Stagi, T. Hennig, and J. Delderfield, “The Sea & Land Surface Temperature Radiometer (SLSTR) technologies,” presented at the 61st International Astronautical Congress (IAC10), Earth Observation Symposium, session on Earth Observation Sensors & Technologies, Czech Republic (2010), paper IAC-10-B.1.3.4.

Tait, H.

D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, and H. Tait, “AATSR: global-change and surface temperature measurements from Envisat,” ESA Bulletin 105, 11–21 (2001).

Whatley, A.

Zhang, K.

K. Zhang, J. S. Seeley, R. Hunneman, and G. J. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).
[CrossRef]

Appl. Opt.

ESA Bulletin

D. Llewellyn-Jones, M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, and H. Tait, “AATSR: global-change and surface temperature measurements from Envisat,” ESA Bulletin 105, 11–21 (2001).

Infrared Phys. Technol.

G. J. Hawkins and R. Hunneman, “A spectral performance model for the High Resolution Dynamics Limb Sounder (6–18 μm),” Infrared Phys. Technol. 41, 239–246 (2000).
[CrossRef]

J. Mod. Opt.

P. Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, and J. Nieke, “SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space,” J. Mod. Opt. 57, 1815–1830 (2010).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

C. R. Pidgeon and S. D. Smith, “Resolving power of multilayer filters in nonparallel light,” J. Opt. Soc. Am. A 54, 1459–1466 (1964).
[CrossRef]

Opt. Acta

J. S. Seeley, H. M. Liddell, and T. C. Chen, “Extraction of Tschebysheff design data for the lowpass dielectric multilayer,” Opt. Acta 20, 641–661 (1973).
[CrossRef]

Phys. Rev.

M. E. Lasser and H. Levinstein, “Optical properties of lead telluride,” Phys. Rev. 96, 47–52 (1954).
[CrossRef]

Proc. SPIE

K. Zhang, J. S. Seeley, R. Hunneman, and G. J. Hawkins, “Optical and semiconductor properties of lead telluride coatings,” Proc. SPIE 1125, 45–52 (1989).
[CrossRef]

Other

P. Coppo, M. Stagi, T. Hennig, and J. Delderfield, “The Sea & Land Surface Temperature Radiometer (SLSTR) technologies,” presented at the 61st International Astronautical Congress (IAC10), Earth Observation Symposium, session on Earth Observation Sensors & Technologies, Czech Republic (2010), paper IAC-10-B.1.3.4.

C. Cole, “Broadband antireflection coatings for spaceflight optics,” Ph.D. thesis (University of Reading, 1995).

R. Hunneman, R. Sherwood, C. Deeley, and R. Spragg, “Achieving accurate FTIR measurements on high performance bandpass filters” in Eleventh International Conference on Fourier Transform Spectroscopy (American Institute of Physics, 1997), pp. 435–438.

G. J. Hawkins, “Spectral characterisation of infrared optical materials and filters,” Ph.D. thesis (University of Reading, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

SLSTR TIR FPA optical layout.

Fig. 2.
Fig. 2.

Uncoated 3 mm thick Ge at 295 and 80 K.

Fig. 3.
Fig. 3.

Uncoated 0.5 mm thick sapphire at 295 and 80 K.

Fig. 4.
Fig. 4.

Spectral measurement of S8 and S9 detector window filters showing long-wave shifts on cooling (295 and 80 K).

Fig. 5.
Fig. 5.

Short-wave cooling shift measurements of dichroic D7 at 22.5° incidence at 295 and 80 K.

Fig. 6.
Fig. 6.

Polarization measurements of dichroic D7 in 22.5° incidence at 80 K.

Fig. 7.
Fig. 7.

Polarization measurements of dichroic D8 at 30° incidence at 80 K.

Fig. 8.
Fig. 8.

Dichroic D8 blocking design calculation in a 30° tilt angle at 80 K.

Fig. 9.
Fig. 9.

Measurements of S7 detector window at 295 and 80 K at 14° incidence angle.

Fig. 10.
Fig. 10.

Filter S7 blocking design calculation at 14° incident angle, representing an equivalent collimated beam with the same spectral behavior as f/1.46 conical illumination at 80 K.

Fig. 11.
Fig. 11.

Polarization measurements of S8 detector window in 14° incidence at 80 K.

Fig. 12.
Fig. 12.

Filter S8 blocking design calculation at 14° incident angle, representing an equivalent collimated beam with the same spectral behavior as f/1.46 conical illumination at 80 K.

Fig. 13.
Fig. 13.

Polarization measurements of S9 detector window in 14° incidence at 80 K.

Fig. 14.
Fig. 14.

Filter S9 blocking design calculation at 14° incident angle, representing an equivalent collimated beam with the same spectral behavior as f/1.46 conical illumination at 80 K.

Fig. 15.
Fig. 15.

(a) Overlay of predicted Channel 7 (3.74 μm) end-to-end system throughput budget. (b) Predicted CH7 normalized spectral response (s, p, mean pol.) within required spectral template.

Fig. 16.
Fig. 16.

(a) Overlay of predicted Channel 8 (10.85 μm) end-to-end system throughput budget. (b) Predicted CH8 normalized spectral response (s, p, mean pol.) within required spectral template.

Fig. 17.
Fig. 17.

(a) Overlay of predicted Channel 9 (12.0 μm) end-to-end system throughput budget. (b) Predicted CH9 normalized spectral response (s, p, mean pol.) within required spectral template.

Fig. 18.
Fig. 18.

Predicted SLSTR channel absolute spectral response (mean pol.) and normalized Planck function at 270 K.

Fig. 19.
Fig. 19.

Schematic layout of thermal deposition chamber.

Tables (5)

Tables Icon

Table 1. SLSTR TIR Spectral Requirements at Operating Temperature and Angle of Incidence

Tables Icon

Table 2. Mean Passband Measurements of Compliant Flight-Quality D8 Dichroic

Tables Icon

Table 3. Mean Passband Measurements of Compliant Flight-Quality Detector Window Filters

Tables Icon

Table 4. SLSTR FMA TIR Spectral Performance

Tables Icon

Table 5. Filters Environmental Test Campaign

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

OoB=1λminλmaxL(λ)R(λ)dλ0.3μm20μmL(λ)R(λ)dλ,
DTps(λ)=SsSpSs+Sp,
Sp=λminλmaxRp(λ)dλandSs=λminλmaxRs(λ)dλ

Metrics