Abstract

The effect of strain on both the index modulation, Δnmod, and average index, Δn¯, during grating regeneration within two types of fibers is studied. Significant tunability of the Bragg wavelength (λB>48nm) is observed during postannealing at or above the strain temperature of the glass. The main reason for the grating wavelength shift during annealing with load is the elongation of the fiber. As well, the observed Moiré interference cycling through regeneration indicates the presence of two gratings.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
    [CrossRef]
  2. S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
    [CrossRef]
  3. M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25, 692–694 (2000).
    [CrossRef]
  4. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
    [CrossRef]
  5. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452 (2008).
    [CrossRef]
  6. J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fibre Bragg gratings,” in Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).
  7. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19, 1198–1206 (2011).
    [CrossRef]
  8. J. Canning and S. Bandyopadhyay, “Laser seeding and thermally processing glass with nanoscale resolution,” in Laser Growth and Processing of Photonic Devices, N. Vainos, ed. (Woodhouse, 2012).
  9. J. Canning, “Regenerated gratings for optical sensing in harsh environments,” presented at Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), OSA’s Advanced Photonics Congress, Colorado Springs, Colorado, United States, 2012.
  10. T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36, 3542–3544 (2011).
    [CrossRef]
  11. M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Trans. 55, 3288–3294 (2012).
    [CrossRef]
  12. G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Proc. SPIE 8421, 842123 (2012).
    [CrossRef]
  13. F. Mezzadri, F. C. Janzen, C. Martelli, J. Canning, and K. Cook, “Monitoramento de temperatura em turbina de motor diesel de locomotiva com sensor a fibra óptica,” presented at the MOMAG2012—15th Brazilian Symposium for Microwaves and Optoelectronics (SBMO) and the 10th Brazilian Congress for Electromagnetics (CBMag), Brazil, 2012.
  14. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
    [CrossRef]
  15. T. Wang, L. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38, 247–249 (2013).
    [CrossRef]
  16. E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
    [CrossRef]
  17. N. Groothoff and J. Canning, “Enhanced type IIA gratings for high temperature operation,” Opt. Lett. 29, 2360–2362 (2004).
    [CrossRef]
  18. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
    [CrossRef]
  19. K. Cook, L.-Y. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2, 1733–1742 (2012).
    [CrossRef]
  20. L.-Y. Shao, T. Wang, J. Canning, K. Cook, and H.-Y. Tam, “Bulk regeneration of optical fiber Bragg gratings,” Appl. Opt. 51, 7165–7169 (2012).
    [CrossRef]
  21. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
    [CrossRef]
  22. S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of Moiré grating in core of germanosilicate fibre by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1947 (1991).
    [CrossRef]

2013 (1)

2012 (4)

K. Cook, L.-Y. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2, 1733–1742 (2012).
[CrossRef]

L.-Y. Shao, T. Wang, J. Canning, K. Cook, and H.-Y. Tam, “Bulk regeneration of optical fiber Bragg gratings,” Appl. Opt. 51, 7165–7169 (2012).
[CrossRef]

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Trans. 55, 3288–3294 (2012).
[CrossRef]

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Proc. SPIE 8421, 842123 (2012).
[CrossRef]

2011 (3)

2008 (3)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452 (2008).
[CrossRef]

2004 (1)

2000 (1)

1997 (3)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

1991 (1)

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of Moiré grating in core of germanosilicate fibre by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1947 (1991).
[CrossRef]

Aslund, M.

J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fibre Bragg gratings,” in Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

Åslund, M.

Åslund, M. L.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Trans. 55, 3288–3294 (2012).
[CrossRef]

Baker, S. R.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Baker, V.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Bandyopadhyay, S.

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19, 1198–1206 (2011).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452 (2008).
[CrossRef]

J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fibre Bragg gratings,” in Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

J. Canning and S. Bandyopadhyay, “Laser seeding and thermally processing glass with nanoscale resolution,” in Laser Growth and Processing of Photonic Devices, N. Vainos, ed. (Woodhouse, 2012).

Bartelt, H.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Bayon, F.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of Moiré grating in core of germanosilicate fibre by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1947 (1991).
[CrossRef]

Becker, M.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Bernage, P.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of Moiré grating in core of germanosilicate fibre by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1947 (1991).
[CrossRef]

Biswas, P.

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19, 1198–1206 (2011).
[CrossRef]

J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fibre Bragg gratings,” in Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

Brückner, S.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Canagasabey, A.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Trans. 55, 3288–3294 (2012).
[CrossRef]

Canning, J.

T. Wang, L. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38, 247–249 (2013).
[CrossRef]

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Trans. 55, 3288–3294 (2012).
[CrossRef]

K. Cook, L.-Y. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2, 1733–1742 (2012).
[CrossRef]

L.-Y. Shao, T. Wang, J. Canning, K. Cook, and H.-Y. Tam, “Bulk regeneration of optical fiber Bragg gratings,” Appl. Opt. 51, 7165–7169 (2012).
[CrossRef]

T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36, 3542–3544 (2011).
[CrossRef]

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19, 1198–1206 (2011).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452 (2008).
[CrossRef]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

N. Groothoff and J. Canning, “Enhanced type IIA gratings for high temperature operation,” Opt. Lett. 29, 2360–2362 (2004).
[CrossRef]

M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25, 692–694 (2000).
[CrossRef]

J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fibre Bragg gratings,” in Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

J. Canning, “Regenerated gratings for optical sensing in harsh environments,” presented at Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), OSA’s Advanced Photonics Congress, Colorado Springs, Colorado, United States, 2012.

J. Canning and S. Bandyopadhyay, “Laser seeding and thermally processing glass with nanoscale resolution,” in Laser Growth and Processing of Photonic Devices, N. Vainos, ed. (Woodhouse, 2012).

F. Mezzadri, F. C. Janzen, C. Martelli, J. Canning, and K. Cook, “Monitoramento de temperatura em turbina de motor diesel de locomotiva com sensor a fibra óptica,” presented at the MOMAG2012—15th Brazilian Symposium for Microwaves and Optoelectronics (SBMO) and the 10th Brazilian Congress for Electromagnetics (CBMag), Brazil, 2012.

Chen, K. P.

Chen, R.

Chen, T.

Chojetzki, C.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Cook, K.

T. Wang, L. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38, 247–249 (2013).
[CrossRef]

K. Cook, L.-Y. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2, 1733–1742 (2012).
[CrossRef]

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Trans. 55, 3288–3294 (2012).
[CrossRef]

L.-Y. Shao, T. Wang, J. Canning, K. Cook, and H.-Y. Tam, “Bulk regeneration of optical fiber Bragg gratings,” Appl. Opt. 51, 7165–7169 (2012).
[CrossRef]

T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36, 3542–3544 (2011).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452 (2008).
[CrossRef]

J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fibre Bragg gratings,” in Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

F. Mezzadri, F. C. Janzen, C. Martelli, J. Canning, and K. Cook, “Monitoramento de temperatura em turbina de motor diesel de locomotiva com sensor a fibra óptica,” presented at the MOMAG2012—15th Brazilian Symposium for Microwaves and Optoelectronics (SBMO) and the 10th Brazilian Congress for Electromagnetics (CBMag), Brazil, 2012.

Cotillard, R.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Proc. SPIE 8421, 842123 (2012).
[CrossRef]

Dasgupta, K.

de Oliveira, R. A.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Trans. 55, 3288–3294 (2012).
[CrossRef]

Douay, M.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of Moiré grating in core of germanosilicate fibre by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1947 (1991).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Ferdinand, P.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Proc. SPIE 8421, 842123 (2012).
[CrossRef]

Fertein, E.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of Moiré grating in core of germanosilicate fibre by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1947 (1991).
[CrossRef]

Georges, T.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of Moiré grating in core of germanosilicate fibre by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1947 (1991).
[CrossRef]

Goodchild, D.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Groothoff, N.

Guo, J. Z. Y.

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Janzen, F. C.

F. Mezzadri, F. C. Janzen, C. Martelli, J. Canning, and K. Cook, “Monitoramento de temperatura em turbina de motor diesel de locomotiva com sensor a fibra óptica,” presented at the MOMAG2012—15th Brazilian Symposium for Microwaves and Optoelectronics (SBMO) and the 10th Brazilian Congress for Electromagnetics (CBMag), Brazil, 2012.

Jewart, C.

Kannan, S.

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Laffont, G.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Proc. SPIE 8421, 842123 (2012).
[CrossRef]

Legoubin, S.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of Moiré grating in core of germanosilicate fibre by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1947 (1991).
[CrossRef]

Lemaire, P. J.

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Lindner, E.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Liu, Y.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Trans. 55, 3288–3294 (2012).
[CrossRef]

Martelli, C.

F. Mezzadri, F. C. Janzen, C. Martelli, J. Canning, and K. Cook, “Monitoramento de temperatura em turbina de motor diesel de locomotiva com sensor a fibra óptica,” presented at the MOMAG2012—15th Brazilian Symposium for Microwaves and Optoelectronics (SBMO) and the 10th Brazilian Congress for Electromagnetics (CBMag), Brazil, 2012.

Mezzadri, F.

F. Mezzadri, F. C. Janzen, C. Martelli, J. Canning, and K. Cook, “Monitoramento de temperatura em turbina de motor diesel de locomotiva com sensor a fibra óptica,” presented at the MOMAG2012—15th Brazilian Symposium for Microwaves and Optoelectronics (SBMO) and the 10th Brazilian Congress for Electromagnetics (CBMag), Brazil, 2012.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Niay, P.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of Moiré grating in core of germanosilicate fibre by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1947 (1991).
[CrossRef]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Peng, G.-D.

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Trans. 55, 3288–3294 (2012).
[CrossRef]

Rothhardt, M.

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Rourke, H. N.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Shao, L.

Shao, L.-Y.

Stevenson, M.

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19, 1198–1206 (2011).
[CrossRef]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452 (2008).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
[CrossRef]

J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fibre Bragg gratings,” in Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

Tam, H.-Y.

Wang, T.

Zhang, B.

Appl. Opt. (1)

Electron. Lett. (1)

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of Moiré grating in core of germanosilicate fibre by transverse holographic double exposure method,” Electron. Lett. 27, 1945–1947 (1991).
[CrossRef]

Int. J. Heat Mass Trans. (1)

M. L. Åslund, J. Canning, A. Canagasabey, R. A. de Oliveira, Y. Liu, K. Cook, and G.-D. Peng, “Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings,” Int. J. Heat Mass Trans. 55, 3288–3294 (2012).
[CrossRef]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

J. Lightwave Technol. (2)

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Laser Photon. Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Opt. Commun. (1)

E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation,” Opt. Commun. 284, 183–185 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. Express (1)

Proc. SPIE (1)

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Proc. SPIE 8421, 842123 (2012).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Sensors (1)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452 (2008).
[CrossRef]

Other (4)

J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fibre Bragg gratings,” in Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

F. Mezzadri, F. C. Janzen, C. Martelli, J. Canning, and K. Cook, “Monitoramento de temperatura em turbina de motor diesel de locomotiva com sensor a fibra óptica,” presented at the MOMAG2012—15th Brazilian Symposium for Microwaves and Optoelectronics (SBMO) and the 10th Brazilian Congress for Electromagnetics (CBMag), Brazil, 2012.

J. Canning and S. Bandyopadhyay, “Laser seeding and thermally processing glass with nanoscale resolution,” in Laser Growth and Processing of Photonic Devices, N. Vainos, ed. (Woodhouse, 2012).

J. Canning, “Regenerated gratings for optical sensing in harsh environments,” presented at Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), OSA’s Advanced Photonics Congress, Colorado Springs, Colorado, United States, 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Evolution of the reflection strengths, R , of the GF1 gratings during regeneration and postannealing with different loads.

Fig. 2.
Fig. 2.

Evolution of the change in Bragg wavelength, Δ λ B , during GF1 grating regeneration and postannealing under different loads. Both linear growth and exponential decay fits of the wavelength with heating and cooling in the postannealing phases are also shown.

Fig. 3.
Fig. 3.

Rate of change in Bragg wavelength, λ B , versus the load added onto GF1 gratings.

Fig. 4.
Fig. 4.

Evolution of the reflection strengths, R , of SMF-28 gratings during regeneration and postannealing under different loads.

Fig. 5.
Fig. 5.

Evolution of the change in Bragg wavelength, Δ λ B , during regeneration of SMF-28 gratings and postannealing under different loads.

Fig. 6.
Fig. 6.

Δ λ B / λ B and elongation of the fiber with gratings under a load of 9 g.

Fig. 7.
Fig. 7.

Evolution of the grating reflection spectra during GF1 seed grating regeneration and postannealing with a load of 6 g. Inset: Spectral evolution of the regenerated grating when annealing temperature dwells at 1100°C and the spectrum of the grating cools back to room T .

Tables (1)

Tables Icon

Table 1. Wavelength Shift, Δ λ B , and the Rate of Shift, d λ / d t , over Different Temperature Windows

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ λ B = λ B [ ( 1 Λ ) ( d Λ d T ) + ( 1 n eff ) ( d n eff d T ) ] Δ T .
Δ λ B λ B = ( 1 p e ) ε = ( 1 p e ) ( Δ Λ Λ ) .
Δ λ B = 2 n eff Δ Λ
Δ λ B λ B = Δ Λ Λ = Δ L L .

Metrics