Abstract

To analyze optical damage of germanium (Ge) induced by a continuous wave (CW) laser, numerical and experimental studies were carried out. Temperature and solid–liquid phase transition with laser conditions were estimated by numerical simulation. In our experiments, we examined morphological changes with hillocks, material changes in the GeO2 layer by oxidation, and new crystal domains formed by recrystallization. The material damage process was explained. Transmittance reduction was also observed in the mid-infrared region. We confirmed that hillock formation, oxidation, and recrystallization through resolidification are critical factors in damaging the optical performance of Ge with a CW laser.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bertolotti, F. De Pasquale, P. Marietti, D. Sette, and G. Vitali, “Laser damage on semiconductor surfaces,” J. Appl. Phys. 38, 4088–4090 (1967).
    [CrossRef]
  2. X. Wang, Y. Qin, B. Wang, L. Zhang, Z. Shen, J. Lu, and X. Ni, “Numerical and experimental study of the thermal stress of silicon induced by a millisecond laser,” Appl. Opt. 50, 3725–3732 (2011).
    [CrossRef]
  3. V. Kuanr, S. K. Bansal, and G. P. Srivastava, “Laser-induced damage in InSb at 1.06 μm wavelength—a comparative study with Ge, Si and GaAs,” Opt. Laser Technol. 28, 345–353 (1996).
    [CrossRef]
  4. T. Jiang, X.-A. Cheng, X. Zheng, H.-M. Jiang, and Q.-S. Lu, “The over-saturation phenomenon of a Hg0.46Cd0.54Tephotovoltaic detector irradiated by a CW laser,” Semicond. Sci. Technol. 26, 115004 (2011).
    [CrossRef]
  5. L. J. Willis and D. C. Emmony, “Laser damage in germanium,” Opt. Laser Technol. 7, 222–228 (1975).
    [CrossRef]
  6. K. Diener, L. Gernandt, J.-P. Moeglin, and P. Ambs, “Study of the influence of the Nd:YAG laser irradiation at 1.3 μm on the thermal–mechanical–optical parameters of germanium,” Opt. Lasers Eng. 43, 1179–1192 (2005).
    [CrossRef]
  7. C. Claeys and E. Simoen, Germanium-Based Technologies (Elsevier, 2007), Chap. 1, pp. 18, 393.
  8. D. C. Harris, “Durable 3–5 μm transmitting infrared window materials,” Infrared Phys. Technol. 39, 185–201 (1998).
    [CrossRef]
  9. J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
    [CrossRef]
  10. D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
    [CrossRef]
  11. C. R. Swaminathan and V. R. Voller, “A general enthalpy method for modeling solidification processes,” Metall. Mater. Trans. B 23B, 661–664 (1992).
  12. A. Goldsmith, T. E. Waterman, and H. J. Hirschborn, “Germanium (Ge),” in Handbook of Thermophysical Properties of Solid Materials (Macmillan, 1961).
  13. S. Okhotin, A. S. Pushkarskii, and V. V. Gorbachev, “Germanium (Ge)” in Thermophysical Properties of Semiconductors (Atom, 1972).
  14. J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Trans. 48, 501–509 (2005).
    [CrossRef]
  15. M. I. Gallant and H. M. Driel, “Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium,” Phys. Rev. Lett. 26, 2133–2146 (1982).
  16. D. C. Emmony, N. J. Phillips, J. H. Toyer, and L. J. Willis, “The topography of laser-irradiated germanium,” J. Phys. D 8, 1472–1479 (1975).
    [CrossRef]
  17. M. L. Dawes, J. T. Dickinson, L. C. Jensen, and S. C. Langford, “Structures obtained from resolidification of flame-melted single-crystal germanium,” Nanotechnology 5, 101–112 (1994).
    [CrossRef]
  18. L. X. Yang, X. F. Peng, and B. X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing,” Int. J. Heat Mass Trans. 44, 4465–4473 (2001).
    [CrossRef]
  19. Y. P. Lei, H. Murakawa, Y. W. Shi, and X. Y. Li, “Numerical simulation of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Comput. Mater. Sci. 21, 276–290 (2001).
    [CrossRef]
  20. JCPDS-ICDD, PDF-2 database (1997) for GeO2 file No. 83-2476.
  21. JCPDS-ICDD, PDF-2 database (1992) for Ge file No. 4-0545.
  22. M.-I. Park, C. S. Kim, C.-O. Park, and S. C. Jeoung, “XRD studies on the femtosecond laser ablated single-crystal germanium in air,” Opt. Lasers Eng. 43, 1322–1329 (2005).
    [CrossRef]

2011

X. Wang, Y. Qin, B. Wang, L. Zhang, Z. Shen, J. Lu, and X. Ni, “Numerical and experimental study of the thermal stress of silicon induced by a millisecond laser,” Appl. Opt. 50, 3725–3732 (2011).
[CrossRef]

T. Jiang, X.-A. Cheng, X. Zheng, H.-M. Jiang, and Q.-S. Lu, “The over-saturation phenomenon of a Hg0.46Cd0.54Tephotovoltaic detector irradiated by a CW laser,” Semicond. Sci. Technol. 26, 115004 (2011).
[CrossRef]

2009

J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
[CrossRef]

2008

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

2005

K. Diener, L. Gernandt, J.-P. Moeglin, and P. Ambs, “Study of the influence of the Nd:YAG laser irradiation at 1.3 μm on the thermal–mechanical–optical parameters of germanium,” Opt. Lasers Eng. 43, 1179–1192 (2005).
[CrossRef]

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Trans. 48, 501–509 (2005).
[CrossRef]

M.-I. Park, C. S. Kim, C.-O. Park, and S. C. Jeoung, “XRD studies on the femtosecond laser ablated single-crystal germanium in air,” Opt. Lasers Eng. 43, 1322–1329 (2005).
[CrossRef]

2001

L. X. Yang, X. F. Peng, and B. X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing,” Int. J. Heat Mass Trans. 44, 4465–4473 (2001).
[CrossRef]

Y. P. Lei, H. Murakawa, Y. W. Shi, and X. Y. Li, “Numerical simulation of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Comput. Mater. Sci. 21, 276–290 (2001).
[CrossRef]

1998

D. C. Harris, “Durable 3–5 μm transmitting infrared window materials,” Infrared Phys. Technol. 39, 185–201 (1998).
[CrossRef]

1996

V. Kuanr, S. K. Bansal, and G. P. Srivastava, “Laser-induced damage in InSb at 1.06 μm wavelength—a comparative study with Ge, Si and GaAs,” Opt. Laser Technol. 28, 345–353 (1996).
[CrossRef]

1994

M. L. Dawes, J. T. Dickinson, L. C. Jensen, and S. C. Langford, “Structures obtained from resolidification of flame-melted single-crystal germanium,” Nanotechnology 5, 101–112 (1994).
[CrossRef]

1992

C. R. Swaminathan and V. R. Voller, “A general enthalpy method for modeling solidification processes,” Metall. Mater. Trans. B 23B, 661–664 (1992).

1982

M. I. Gallant and H. M. Driel, “Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium,” Phys. Rev. Lett. 26, 2133–2146 (1982).

1975

D. C. Emmony, N. J. Phillips, J. H. Toyer, and L. J. Willis, “The topography of laser-irradiated germanium,” J. Phys. D 8, 1472–1479 (1975).
[CrossRef]

L. J. Willis and D. C. Emmony, “Laser damage in germanium,” Opt. Laser Technol. 7, 222–228 (1975).
[CrossRef]

1967

M. Bertolotti, F. De Pasquale, P. Marietti, D. Sette, and G. Vitali, “Laser damage on semiconductor surfaces,” J. Appl. Phys. 38, 4088–4090 (1967).
[CrossRef]

Ambs, P.

K. Diener, L. Gernandt, J.-P. Moeglin, and P. Ambs, “Study of the influence of the Nd:YAG laser irradiation at 1.3 μm on the thermal–mechanical–optical parameters of germanium,” Opt. Lasers Eng. 43, 1179–1192 (2005).
[CrossRef]

Bansal, S. K.

V. Kuanr, S. K. Bansal, and G. P. Srivastava, “Laser-induced damage in InSb at 1.06 μm wavelength—a comparative study with Ge, Si and GaAs,” Opt. Laser Technol. 28, 345–353 (1996).
[CrossRef]

Beraun, J. E.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Trans. 48, 501–509 (2005).
[CrossRef]

Bertolotti, M.

M. Bertolotti, F. De Pasquale, P. Marietti, D. Sette, and G. Vitali, “Laser damage on semiconductor surfaces,” J. Appl. Phys. 38, 4088–4090 (1967).
[CrossRef]

Brown, D. C.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Chen, J. K.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Trans. 48, 501–509 (2005).
[CrossRef]

Cheng, X.-A.

T. Jiang, X.-A. Cheng, X. Zheng, H.-M. Jiang, and Q.-S. Lu, “The over-saturation phenomenon of a Hg0.46Cd0.54Tephotovoltaic detector irradiated by a CW laser,” Semicond. Sci. Technol. 26, 115004 (2011).
[CrossRef]

Claeys, C.

C. Claeys and E. Simoen, Germanium-Based Technologies (Elsevier, 2007), Chap. 1, pp. 18, 393.

Dawes, M. L.

M. L. Dawes, J. T. Dickinson, L. C. Jensen, and S. C. Langford, “Structures obtained from resolidification of flame-melted single-crystal germanium,” Nanotechnology 5, 101–112 (1994).
[CrossRef]

De Pasquale, F.

M. Bertolotti, F. De Pasquale, P. Marietti, D. Sette, and G. Vitali, “Laser damage on semiconductor surfaces,” J. Appl. Phys. 38, 4088–4090 (1967).
[CrossRef]

Dickinson, J. T.

M. L. Dawes, J. T. Dickinson, L. C. Jensen, and S. C. Langford, “Structures obtained from resolidification of flame-melted single-crystal germanium,” Nanotechnology 5, 101–112 (1994).
[CrossRef]

Diener, K.

K. Diener, L. Gernandt, J.-P. Moeglin, and P. Ambs, “Study of the influence of the Nd:YAG laser irradiation at 1.3 μm on the thermal–mechanical–optical parameters of germanium,” Opt. Lasers Eng. 43, 1179–1192 (2005).
[CrossRef]

Dong, C. M.

J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
[CrossRef]

Driel, H. M.

M. I. Gallant and H. M. Driel, “Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium,” Phys. Rev. Lett. 26, 2133–2146 (1982).

Emmony, D. C.

D. C. Emmony, N. J. Phillips, J. H. Toyer, and L. J. Willis, “The topography of laser-irradiated germanium,” J. Phys. D 8, 1472–1479 (1975).
[CrossRef]

L. J. Willis and D. C. Emmony, “Laser damage in germanium,” Opt. Laser Technol. 7, 222–228 (1975).
[CrossRef]

Gallant, M. I.

M. I. Gallant and H. M. Driel, “Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium,” Phys. Rev. Lett. 26, 2133–2146 (1982).

Gernandt, L.

K. Diener, L. Gernandt, J.-P. Moeglin, and P. Ambs, “Study of the influence of the Nd:YAG laser irradiation at 1.3 μm on the thermal–mechanical–optical parameters of germanium,” Opt. Lasers Eng. 43, 1179–1192 (2005).
[CrossRef]

Goldsmith, A.

A. Goldsmith, T. E. Waterman, and H. J. Hirschborn, “Germanium (Ge),” in Handbook of Thermophysical Properties of Solid Materials (Macmillan, 1961).

Gorbachev, V. V.

S. Okhotin, A. S. Pushkarskii, and V. V. Gorbachev, “Germanium (Ge)” in Thermophysical Properties of Semiconductors (Atom, 1972).

Guelzow, J.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Harris, D. C.

D. C. Harris, “Durable 3–5 μm transmitting infrared window materials,” Infrared Phys. Technol. 39, 185–201 (1998).
[CrossRef]

Hirschborn, H. J.

A. Goldsmith, T. E. Waterman, and H. J. Hirschborn, “Germanium (Ge),” in Handbook of Thermophysical Properties of Solid Materials (Macmillan, 1961).

Jensen, L. C.

M. L. Dawes, J. T. Dickinson, L. C. Jensen, and S. C. Langford, “Structures obtained from resolidification of flame-melted single-crystal germanium,” Nanotechnology 5, 101–112 (1994).
[CrossRef]

Jeoung, S. C.

M.-I. Park, C. S. Kim, C.-O. Park, and S. C. Jeoung, “XRD studies on the femtosecond laser ablated single-crystal germanium in air,” Opt. Lasers Eng. 43, 1322–1329 (2005).
[CrossRef]

Jia, Z. T.

J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
[CrossRef]

Jiang, H.-M.

T. Jiang, X.-A. Cheng, X. Zheng, H.-M. Jiang, and Q.-S. Lu, “The over-saturation phenomenon of a Hg0.46Cd0.54Tephotovoltaic detector irradiated by a CW laser,” Semicond. Sci. Technol. 26, 115004 (2011).
[CrossRef]

Jiang, M. H.

J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
[CrossRef]

Jiang, T.

T. Jiang, X.-A. Cheng, X. Zheng, H.-M. Jiang, and Q.-S. Lu, “The over-saturation phenomenon of a Hg0.46Cd0.54Tephotovoltaic detector irradiated by a CW laser,” Semicond. Sci. Technol. 26, 115004 (2011).
[CrossRef]

Kim, C. S.

M.-I. Park, C. S. Kim, C.-O. Park, and S. C. Jeoung, “XRD studies on the femtosecond laser ablated single-crystal germanium in air,” Opt. Lasers Eng. 43, 1322–1329 (2005).
[CrossRef]

Kowalewski, K.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Kuanr, V.

V. Kuanr, S. K. Bansal, and G. P. Srivastava, “Laser-induced damage in InSb at 1.06 μm wavelength—a comparative study with Ge, Si and GaAs,” Opt. Laser Technol. 28, 345–353 (1996).
[CrossRef]

Kuper, J. W.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Langford, S. C.

M. L. Dawes, J. T. Dickinson, L. C. Jensen, and S. C. Langford, “Structures obtained from resolidification of flame-melted single-crystal germanium,” Nanotechnology 5, 101–112 (1994).
[CrossRef]

Lei, Y. P.

Y. P. Lei, H. Murakawa, Y. W. Shi, and X. Y. Li, “Numerical simulation of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Comput. Mater. Sci. 21, 276–290 (2001).
[CrossRef]

Li, X. Y.

Y. P. Lei, H. Murakawa, Y. W. Shi, and X. Y. Li, “Numerical simulation of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Comput. Mater. Sci. 21, 276–290 (2001).
[CrossRef]

Lu, J.

Lu, Q.-S.

T. Jiang, X.-A. Cheng, X. Zheng, H.-M. Jiang, and Q.-S. Lu, “The over-saturation phenomenon of a Hg0.46Cd0.54Tephotovoltaic detector irradiated by a CW laser,” Semicond. Sci. Technol. 26, 115004 (2011).
[CrossRef]

Marietti, P.

M. Bertolotti, F. De Pasquale, P. Marietti, D. Sette, and G. Vitali, “Laser damage on semiconductor surfaces,” J. Appl. Phys. 38, 4088–4090 (1967).
[CrossRef]

Moeglin, J.-P.

K. Diener, L. Gernandt, J.-P. Moeglin, and P. Ambs, “Study of the influence of the Nd:YAG laser irradiation at 1.3 μm on the thermal–mechanical–optical parameters of germanium,” Opt. Lasers Eng. 43, 1179–1192 (2005).
[CrossRef]

Murakawa, H.

Y. P. Lei, H. Murakawa, Y. W. Shi, and X. Y. Li, “Numerical simulation of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Comput. Mater. Sci. 21, 276–290 (2001).
[CrossRef]

Ni, X.

Okhotin, S.

S. Okhotin, A. S. Pushkarskii, and V. V. Gorbachev, “Germanium (Ge)” in Thermophysical Properties of Semiconductors (Atom, 1972).

Park, C.-O.

M.-I. Park, C. S. Kim, C.-O. Park, and S. C. Jeoung, “XRD studies on the femtosecond laser ablated single-crystal germanium in air,” Opt. Lasers Eng. 43, 1322–1329 (2005).
[CrossRef]

Park, M.-I.

M.-I. Park, C. S. Kim, C.-O. Park, and S. C. Jeoung, “XRD studies on the femtosecond laser ablated single-crystal germanium in air,” Opt. Lasers Eng. 43, 1322–1329 (2005).
[CrossRef]

Peng, X. F.

L. X. Yang, X. F. Peng, and B. X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing,” Int. J. Heat Mass Trans. 44, 4465–4473 (2001).
[CrossRef]

Phillips, N. J.

D. C. Emmony, N. J. Phillips, J. H. Toyer, and L. J. Willis, “The topography of laser-irradiated germanium,” J. Phys. D 8, 1472–1479 (1975).
[CrossRef]

Pushkarskii, A. S.

S. Okhotin, A. S. Pushkarskii, and V. V. Gorbachev, “Germanium (Ge)” in Thermophysical Properties of Semiconductors (Atom, 1972).

Qin, Y.

Sette, D.

M. Bertolotti, F. De Pasquale, P. Marietti, D. Sette, and G. Vitali, “Laser damage on semiconductor surfaces,” J. Appl. Phys. 38, 4088–4090 (1967).
[CrossRef]

Shen, Z.

Shi, Y. W.

Y. P. Lei, H. Murakawa, Y. W. Shi, and X. Y. Li, “Numerical simulation of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Comput. Mater. Sci. 21, 276–290 (2001).
[CrossRef]

Simoen, E.

C. Claeys and E. Simoen, Germanium-Based Technologies (Elsevier, 2007), Chap. 1, pp. 18, 393.

Singley, J. M.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Srivastava, G. P.

V. Kuanr, S. K. Bansal, and G. P. Srivastava, “Laser-induced damage in InSb at 1.06 μm wavelength—a comparative study with Ge, Si and GaAs,” Opt. Laser Technol. 28, 345–353 (1996).
[CrossRef]

Swaminathan, C. R.

C. R. Swaminathan and V. R. Voller, “A general enthalpy method for modeling solidification processes,” Metall. Mater. Trans. B 23B, 661–664 (1992).

Tao, X. T.

J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
[CrossRef]

Toyer, J. H.

D. C. Emmony, N. J. Phillips, J. H. Toyer, and L. J. Willis, “The topography of laser-irradiated germanium,” J. Phys. D 8, 1472–1479 (1975).
[CrossRef]

Tzou, D. Y.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Trans. 48, 501–509 (2005).
[CrossRef]

Vitali, G.

M. Bertolotti, F. De Pasquale, P. Marietti, D. Sette, and G. Vitali, “Laser damage on semiconductor surfaces,” J. Appl. Phys. 38, 4088–4090 (1967).
[CrossRef]

Voller, V. R.

C. R. Swaminathan and V. R. Voller, “A general enthalpy method for modeling solidification processes,” Metall. Mater. Trans. B 23B, 661–664 (1992).

Wang, B.

Wang, B. X.

L. X. Yang, X. F. Peng, and B. X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing,” Int. J. Heat Mass Trans. 44, 4465–4473 (2001).
[CrossRef]

Wang, X.

Waterman, T. E.

A. Goldsmith, T. E. Waterman, and H. J. Hirschborn, “Germanium (Ge),” in Handbook of Thermophysical Properties of Solid Materials (Macmillan, 1961).

Willis, L. J.

D. C. Emmony, N. J. Phillips, J. H. Toyer, and L. J. Willis, “The topography of laser-irradiated germanium,” J. Phys. D 8, 1472–1479 (1975).
[CrossRef]

L. J. Willis and D. C. Emmony, “Laser damage in germanium,” Opt. Laser Technol. 7, 222–228 (1975).
[CrossRef]

Yager, E.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Yang, L. X.

L. X. Yang, X. F. Peng, and B. X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing,” Int. J. Heat Mass Trans. 44, 4465–4473 (2001).
[CrossRef]

Yu, H. H.

J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
[CrossRef]

Zhang, J.

J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
[CrossRef]

Zhang, L.

Zhang, Y. Z.

J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
[CrossRef]

Zheng, X.

T. Jiang, X.-A. Cheng, X. Zheng, H.-M. Jiang, and Q.-S. Lu, “The over-saturation phenomenon of a Hg0.46Cd0.54Tephotovoltaic detector irradiated by a CW laser,” Semicond. Sci. Technol. 26, 115004 (2011).
[CrossRef]

Zhi, Y. C.

J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
[CrossRef]

Appl. Opt.

Comput. Mater. Sci.

Y. P. Lei, H. Murakawa, Y. W. Shi, and X. Y. Li, “Numerical simulation of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Comput. Mater. Sci. 21, 276–290 (2001).
[CrossRef]

Infrared Phys. Technol.

D. C. Harris, “Durable 3–5 μm transmitting infrared window materials,” Infrared Phys. Technol. 39, 185–201 (1998).
[CrossRef]

Int. J. Heat Mass Trans.

L. X. Yang, X. F. Peng, and B. X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing,” Int. J. Heat Mass Trans. 44, 4465–4473 (2001).
[CrossRef]

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Trans. 48, 501–509 (2005).
[CrossRef]

J. Appl. Phys.

M. Bertolotti, F. De Pasquale, P. Marietti, D. Sette, and G. Vitali, “Laser damage on semiconductor surfaces,” J. Appl. Phys. 38, 4088–4090 (1967).
[CrossRef]

J. Phys. D

D. C. Emmony, N. J. Phillips, J. H. Toyer, and L. J. Willis, “The topography of laser-irradiated germanium,” J. Phys. D 8, 1472–1479 (1975).
[CrossRef]

Laser Phys. Lett.

J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, and M. H. Jiang, “Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals,” Laser Phys. Lett. 6, 355–358 (2009).
[CrossRef]

Metall. Mater. Trans. B

C. R. Swaminathan and V. R. Voller, “A general enthalpy method for modeling solidification processes,” Metall. Mater. Trans. B 23B, 661–664 (1992).

Nanotechnology

M. L. Dawes, J. T. Dickinson, L. C. Jensen, and S. C. Langford, “Structures obtained from resolidification of flame-melted single-crystal germanium,” Nanotechnology 5, 101–112 (1994).
[CrossRef]

Opt. Laser Technol.

V. Kuanr, S. K. Bansal, and G. P. Srivastava, “Laser-induced damage in InSb at 1.06 μm wavelength—a comparative study with Ge, Si and GaAs,” Opt. Laser Technol. 28, 345–353 (1996).
[CrossRef]

L. J. Willis and D. C. Emmony, “Laser damage in germanium,” Opt. Laser Technol. 7, 222–228 (1975).
[CrossRef]

Opt. Lasers Eng.

K. Diener, L. Gernandt, J.-P. Moeglin, and P. Ambs, “Study of the influence of the Nd:YAG laser irradiation at 1.3 μm on the thermal–mechanical–optical parameters of germanium,” Opt. Lasers Eng. 43, 1179–1192 (2005).
[CrossRef]

M.-I. Park, C. S. Kim, C.-O. Park, and S. C. Jeoung, “XRD studies on the femtosecond laser ablated single-crystal germanium in air,” Opt. Lasers Eng. 43, 1322–1329 (2005).
[CrossRef]

Phys. Rev. Lett.

M. I. Gallant and H. M. Driel, “Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium,” Phys. Rev. Lett. 26, 2133–2146 (1982).

Proc. SPIE

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Semicond. Sci. Technol.

T. Jiang, X.-A. Cheng, X. Zheng, H.-M. Jiang, and Q.-S. Lu, “The over-saturation phenomenon of a Hg0.46Cd0.54Tephotovoltaic detector irradiated by a CW laser,” Semicond. Sci. Technol. 26, 115004 (2011).
[CrossRef]

Other

C. Claeys and E. Simoen, Germanium-Based Technologies (Elsevier, 2007), Chap. 1, pp. 18, 393.

A. Goldsmith, T. E. Waterman, and H. J. Hirschborn, “Germanium (Ge),” in Handbook of Thermophysical Properties of Solid Materials (Macmillan, 1961).

S. Okhotin, A. S. Pushkarskii, and V. V. Gorbachev, “Germanium (Ge)” in Thermophysical Properties of Semiconductors (Atom, 1972).

JCPDS-ICDD, PDF-2 database (1997) for GeO2 file No. 83-2476.

JCPDS-ICDD, PDF-2 database (1992) for Ge file No. 4-0545.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic diagram of computational domain, coordinates, and laser beam direction for simulation. (b) Gaussian profile of laser source for simulation with each average power density. (c) Experimental setup for laser irradiation on Ge. (d) Measured intensity profile of 1.07 μm Yb-doped fiber laser.

Fig. 2.
Fig. 2.

(a) Calculated temperature variation and (b) the liquid fraction (β) versus irradiance time with each laser intensity.

Fig. 3.
Fig. 3.

Molten pool radius estimated on Ge surface versus fluence as each laser intensity.

Fig. 4.
Fig. 4.

OM images (×100): (a) 0.1kW/cm2 for 70 s, (b) 0.3kW/cm2 for 11 s, and (c) 0.9kW/cm2 for 1 s. (d) Comparison between calculated and measured values of molten pool radius on Ge surface.

Fig. 5.
Fig. 5.

XRD patterns of (a) undamaged, (b) 0.1kW/cm2 for 70 s, (c) 0.3kW/cm2 for 11 s, and (d) 0.9kW/cm2 for 1 s.

Fig. 6.
Fig. 6.

Schematic diagram of material damage process under laser irradiation: (a) melting by laser irradiation, (b) oxidation and resolidification during cooling, and (c) GeO2 layer formation and recrystallization from hillock growth.

Fig. 7.
Fig. 7.

Transmittance versus wavelength graphs: (a) 0.1kW/cm2 for 70 s, (b) 0.3kW/cm2 for 11 s, and (c) 0.9kW/cm2 for 1 s.

Fig. 8.
Fig. 8.

MWIR images of (a) undamaged and (b) damaged Ge (0.1kW/cm2 for 70 s).

Tables (1)

Tables Icon

Table 1. Physical Properties of Ge

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ht=r(αrhr)+z(αhz)+S,
S=I0(1R)er2/w02,
h=h0+T0TcpdT+βHf,
β=0ifT=Ts,
β=TTsTmTsifTs<T<Tm,
β=1ifT=Tm,

Metrics