Abstract

The efficient generation of broad Raman sidebands is experimentally demonstrated in a short piece of index-guided photonic crystal fiber, which is pumped by a high-peak-power pulse near the zero-dispersion wavelength and seeded by a continuous-wave Stokes signal centered at 1117 nm. The Raman sidebands generated via stimulated Raman scattering and cascaded four-wave mixing contain five Stokes and six anti-Stokes peaks and span from 827 to 1398 nm, and the 3 dB linewidth for each peak is smaller than 1 nm. However, the pure Raman sidebands are largely dependent on the pulse pump power as well as the fiber length.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19, 13757–13769 (2011).
    [CrossRef]
  2. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29, 2875–2885 (2012).
    [CrossRef]
  3. D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
    [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  5. W. Yan-Bin, X. Chun-Le, H. Jing, L. Qi-Sheng, P. Yang, and C. Zi-Lun, “Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers,” Acta Phys. Sin. 60, 313–318 (2011).
  6. L. Ying, H. Jing, W. Yanbin, J. Aijun, and J. Zongfu, “Theoretical research on the generation of coherent supercontinuum,” Acta Phys. Sin. 61, 94212 (2012).
  7. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [CrossRef]
  8. G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
    [CrossRef]
  9. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37, 4371–4373 (2012).
    [CrossRef]
  10. M. Katsuragawa, R. P. Kanaka, K. Shiraga, H. Aoki, F. Benabid, F. Couny, and Y. Y. Wang, “Efficient generation of broad Raman sidebands in a kagome-lattice-type photonic crystal fiber,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on (IEEE, 2010), pp. 1–2.
  11. A. Abdolvand, A. M. Walser, M. Ziemienczuk, and P. S. Russell, “Phase-locked Raman frequency comb generation in gas-filled hollow-core PCF,” in CLEO: Science and Innovations (Optical Society of America, 2012), pp. h2B–h4B.
  12. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical frequency combs,” Science 318, 1118 (2007).
    [CrossRef]
  13. Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett 105, 123603 (2010).
    [CrossRef]
  14. X. Xiaoming, C. Zilun, L. Shiyao, H. Jing, and J. Zongfu, “Coupling and fusion splicing of photonic crystal fibers with conventional fibers,” Laser Tech. 35, 202–205 (2011).
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  16. A. Cerqueira Sodre, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16, 2816–2828 (2008).
    [CrossRef]

2012

2011

Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19, 13757–13769 (2011).
[CrossRef]

W. Yan-Bin, X. Chun-Le, H. Jing, L. Qi-Sheng, P. Yang, and C. Zi-Lun, “Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers,” Acta Phys. Sin. 60, 313–318 (2011).

X. Xiaoming, C. Zilun, L. Shiyao, H. Jing, and J. Zongfu, “Coupling and fusion splicing of photonic crystal fibers with conventional fibers,” Laser Tech. 35, 202–205 (2011).

2010

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett 105, 123603 (2010).
[CrossRef]

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
[CrossRef]

2009

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[CrossRef]

2008

2007

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical frequency combs,” Science 318, 1118 (2007).
[CrossRef]

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2002

Abdolvand, A.

A. Abdolvand, A. M. Walser, M. Ziemienczuk, and P. S. Russell, “Phase-locked Raman frequency comb generation in gas-filled hollow-core PCF,” in CLEO: Science and Innovations (Optical Society of America, 2012), pp. h2B–h4B.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Aijun, J.

L. Ying, H. Jing, W. Yanbin, J. Aijun, and J. Zongfu, “Theoretical research on the generation of coherent supercontinuum,” Acta Phys. Sin. 61, 94212 (2012).

Aoki, H.

M. Katsuragawa, R. P. Kanaka, K. Shiraga, H. Aoki, F. Benabid, F. Couny, and Y. Y. Wang, “Efficient generation of broad Raman sidebands in a kagome-lattice-type photonic crystal fiber,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on (IEEE, 2010), pp. 1–2.

Bang, O.

Benabid, F.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett 105, 123603 (2010).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical frequency combs,” Science 318, 1118 (2007).
[CrossRef]

M. Katsuragawa, R. P. Kanaka, K. Shiraga, H. Aoki, F. Benabid, F. Couny, and Y. Y. Wang, “Efficient generation of broad Raman sidebands in a kagome-lattice-type photonic crystal fiber,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on (IEEE, 2010), pp. 1–2.

Cerqueira Sodre, A.

Chavez Boggio, J. M.

Chun-Le, X.

W. Yan-Bin, X. Chun-Le, H. Jing, L. Qi-Sheng, P. Yang, and C. Zi-Lun, “Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers,” Acta Phys. Sin. 60, 313–318 (2011).

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[CrossRef]

Couny, F.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett 105, 123603 (2010).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical frequency combs,” Science 318, 1118 (2007).
[CrossRef]

M. Katsuragawa, R. P. Kanaka, K. Shiraga, H. Aoki, F. Benabid, F. Couny, and Y. Y. Wang, “Efficient generation of broad Raman sidebands in a kagome-lattice-type photonic crystal fiber,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on (IEEE, 2010), pp. 1–2.

Dudley, J. M.

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[CrossRef]

Fragnito, H. L.

Frosz, M.

Genty, G.

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Ghenuche, P.

Hernandez-Figueroa, H. E.

Jalali, B.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
[CrossRef]

Jing, H.

L. Ying, H. Jing, W. Yanbin, J. Aijun, and J. Zongfu, “Theoretical research on the generation of coherent supercontinuum,” Acta Phys. Sin. 61, 94212 (2012).

W. Yan-Bin, X. Chun-Le, H. Jing, L. Qi-Sheng, P. Yang, and C. Zi-Lun, “Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers,” Acta Phys. Sin. 60, 313–318 (2011).

X. Xiaoming, C. Zilun, L. Shiyao, H. Jing, and J. Zongfu, “Coupling and fusion splicing of photonic crystal fibers with conventional fibers,” Laser Tech. 35, 202–205 (2011).

Joly, N. Y.

Kanaka, R. P.

M. Katsuragawa, R. P. Kanaka, K. Shiraga, H. Aoki, F. Benabid, F. Couny, and Y. Y. Wang, “Efficient generation of broad Raman sidebands in a kagome-lattice-type photonic crystal fiber,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on (IEEE, 2010), pp. 1–2.

Katsuragawa, M.

M. Katsuragawa, R. P. Kanaka, K. Shiraga, H. Aoki, F. Benabid, F. Couny, and Y. Y. Wang, “Efficient generation of broad Raman sidebands in a kagome-lattice-type photonic crystal fiber,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on (IEEE, 2010), pp. 1–2.

Knight, J. C.

Larsen, C.

Lau, A. P. T.

Li, F.

Li, Q.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical frequency combs,” Science 318, 1118 (2007).
[CrossRef]

Møller, U.

Moselund, P. M.

Qi-Sheng, L.

W. Yan-Bin, X. Chun-Le, H. Jing, L. Qi-Sheng, P. Yang, and C. Zi-Lun, “Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers,” Acta Phys. Sin. 60, 313–318 (2011).

Rammler, S.

Raymer, M. G.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett 105, 123603 (2010).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical frequency combs,” Science 318, 1118 (2007).
[CrossRef]

Rieznik, A. A.

Rigneault, H.

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical frequency combs,” Science 318, 1118 (2007).
[CrossRef]

Ropers, C.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
[CrossRef]

Russell, P. S.

A. Abdolvand, A. M. Walser, M. Ziemienczuk, and P. S. Russell, “Phase-locked Raman frequency comb generation in gas-filled hollow-core PCF,” in CLEO: Science and Innovations (Optical Society of America, 2012), pp. h2B–h4B.

Russell, P. S. J.

Scharrer, M.

Shiraga, K.

M. Katsuragawa, R. P. Kanaka, K. Shiraga, H. Aoki, F. Benabid, F. Couny, and Y. Y. Wang, “Efficient generation of broad Raman sidebands in a kagome-lattice-type photonic crystal fiber,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on (IEEE, 2010), pp. 1–2.

Shiyao, L.

X. Xiaoming, C. Zilun, L. Shiyao, H. Jing, and J. Zongfu, “Coupling and fusion splicing of photonic crystal fibers with conventional fibers,” Laser Tech. 35, 202–205 (2011).

Solli, D. R.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
[CrossRef]

Sørensen, S. T.

Thomsen, C. L.

Tsia, K. K.

Wai, P. K. A.

Walser, A. M.

A. Abdolvand, A. M. Walser, M. Ziemienczuk, and P. S. Russell, “Phase-locked Raman frequency comb generation in gas-filled hollow-core PCF,” in CLEO: Science and Innovations (Optical Society of America, 2012), pp. h2B–h4B.

Wang, Y. Y.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett 105, 123603 (2010).
[CrossRef]

M. Katsuragawa, R. P. Kanaka, K. Shiraga, H. Aoki, F. Benabid, F. Couny, and Y. Y. Wang, “Efficient generation of broad Raman sidebands in a kagome-lattice-type photonic crystal fiber,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on (IEEE, 2010), pp. 1–2.

Wenger, J.

Wong, K. K. Y.

Wu, C.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett 105, 123603 (2010).
[CrossRef]

Xiaoming, X.

X. Xiaoming, C. Zilun, L. Shiyao, H. Jing, and J. Zongfu, “Coupling and fusion splicing of photonic crystal fibers with conventional fibers,” Laser Tech. 35, 202–205 (2011).

Yanbin, W.

L. Ying, H. Jing, W. Yanbin, J. Aijun, and J. Zongfu, “Theoretical research on the generation of coherent supercontinuum,” Acta Phys. Sin. 61, 94212 (2012).

Yan-Bin, W.

W. Yan-Bin, X. Chun-Le, H. Jing, L. Qi-Sheng, P. Yang, and C. Zi-Lun, “Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers,” Acta Phys. Sin. 60, 313–318 (2011).

Yang, P.

W. Yan-Bin, X. Chun-Le, H. Jing, L. Qi-Sheng, P. Yang, and C. Zi-Lun, “Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers,” Acta Phys. Sin. 60, 313–318 (2011).

Ying, L.

L. Ying, H. Jing, W. Yanbin, J. Aijun, and J. Zongfu, “Theoretical research on the generation of coherent supercontinuum,” Acta Phys. Sin. 61, 94212 (2012).

Ziemienczuk, M.

A. Abdolvand, A. M. Walser, M. Ziemienczuk, and P. S. Russell, “Phase-locked Raman frequency comb generation in gas-filled hollow-core PCF,” in CLEO: Science and Innovations (Optical Society of America, 2012), pp. h2B–h4B.

Zilun, C.

X. Xiaoming, C. Zilun, L. Shiyao, H. Jing, and J. Zongfu, “Coupling and fusion splicing of photonic crystal fibers with conventional fibers,” Laser Tech. 35, 202–205 (2011).

Zi-Lun, C.

W. Yan-Bin, X. Chun-Le, H. Jing, L. Qi-Sheng, P. Yang, and C. Zi-Lun, “Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers,” Acta Phys. Sin. 60, 313–318 (2011).

Zongfu, J.

L. Ying, H. Jing, W. Yanbin, J. Aijun, and J. Zongfu, “Theoretical research on the generation of coherent supercontinuum,” Acta Phys. Sin. 61, 94212 (2012).

X. Xiaoming, C. Zilun, L. Shiyao, H. Jing, and J. Zongfu, “Coupling and fusion splicing of photonic crystal fibers with conventional fibers,” Laser Tech. 35, 202–205 (2011).

Acta Phys. Sin.

W. Yan-Bin, X. Chun-Le, H. Jing, L. Qi-Sheng, P. Yang, and C. Zi-Lun, “Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers,” Acta Phys. Sin. 60, 313–318 (2011).

L. Ying, H. Jing, W. Yanbin, J. Aijun, and J. Zongfu, “Theoretical research on the generation of coherent supercontinuum,” Acta Phys. Sin. 61, 94212 (2012).

IEEE J. Quantum Electron.

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Laser Tech.

X. Xiaoming, C. Zilun, L. Shiyao, H. Jing, and J. Zongfu, “Coupling and fusion splicing of photonic crystal fibers with conventional fibers,” Laser Tech. 35, 202–205 (2011).

Opt. Express

Opt. Lett.

Phys. Rev. Lett

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs,” Phys. Rev. Lett 105, 123603 (2010).
[CrossRef]

Phys. Rev. Lett.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Science

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical frequency combs,” Science 318, 1118 (2007).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

M. Katsuragawa, R. P. Kanaka, K. Shiraga, H. Aoki, F. Benabid, F. Couny, and Y. Y. Wang, “Efficient generation of broad Raman sidebands in a kagome-lattice-type photonic crystal fiber,” in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on (IEEE, 2010), pp. 1–2.

A. Abdolvand, A. M. Walser, M. Ziemienczuk, and P. S. Russell, “Phase-locked Raman frequency comb generation in gas-filled hollow-core PCF,” in CLEO: Science and Innovations (Optical Society of America, 2012), pp. h2B–h4B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic experimental setup. LD, laser diode; BPF, bandpass filter; HR, grating with high reflectivity; YDF, ytterbium-doped fiber; LR, grating with low reflectivity; ISO, isolator; PCF, photonic crystal fiber; and OSA, optical spectrum analyzer. (b) Spectrum of the CW Stokes signal measured at the output of PCF; inset shows the enlarged view of the CW Stokes spectrum.

Fig. 2.
Fig. 2.

(a) Calculated effective mode field area of the PCF with parameters Λ=3.35μm, d=2.05μm, and 4.6 μm core diameter. The inset shows a scanning electron microscope picture of its cross section. (b) Calculated dispersion and group velocity curves of PCF. Solid circles on the curves show the locations of Stokes peaks or anti-Stokes peaks. Hollow circle shows the location of the ZDW.

Fig. 3.
Fig. 3.

(a) Output spectrum of 40 cm PCF through pulse pumping only; the red dotted line shows the location of the ZDW. (b) Broad Raman sidebands generated when CW Stokes signal is seeded.

Fig. 4.
Fig. 4.

Output spectra at different fiber lengths L for pulse pumping only (thin lines) and CW-signal-seeded pumping (thick lines) (a) for L=95cm, (b) for L=75cm, (c) for L=65cm, and (d) for L=50cm. Humps of the spectra (thin lines) indicated by the arrows are the first Stokes peaks for the corresponding fiber length in the case of pulse pumping only.

Fig. 5.
Fig. 5.

(a) Generated spectra in the case of pulse pumping only for different average power measured at the output end of the PCF with the fiber length of 75 cm. (b), (c), and (d) Generated spectra for different pulse levels for pulse pumping only (thin lines) and corresponding spectra for CW-signal-seeded pumping (thick lines). Humps of the spectra at corresponding incident power levels are marked by A, B, and C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

gRP0crLeff/Aeff16,
Ωmax=±(2γP0|β2|)1/2

Metrics