Abstract

We present a frequency-sweeping heterodyne interferometer to measure an absolute distance based on a frequency-tunable diode laser calibrated by an optical frequency comb (OFC) and an interferometric phase measurement system. The laser frequency-sweeping process is calibrated by the OFC within a range of 200 GHz and an accuracy of 1.3 kHz, which brings about a precise temporal synthetic wavelength of 1.499 mm. The interferometric phase measurement system consisting of the analog signal processing circuit and the digital phase meter achieves a phase difference resolution better than 0.1 deg. As the laser frequency is sweeping, the absolute distance can be determined by measuring the phase difference variation of the interference signals. In the laboratory condition, our experimental scheme realizes micrometer accuracy over meter distance.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser

Hanzhong Wu, Fumin Zhang, Tingyang Liu, Petr Balling, and Xinghua Qu
Appl. Opt. 55(15) 4210-4218 (2016)

Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air

Lijun Yang, Xuejian Wu, Haoyun Wei, and Yan Li
Appl. Opt. 56(11) 3109-3115 (2017)

High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source

Yves Salvadé, Nicolas Schuhler, Samuel Lévêque, and Sébastien Le Floch
Appl. Opt. 47(14) 2715-2720 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription