Abstract

We present a frequency-sweeping heterodyne interferometer to measure an absolute distance based on a frequency-tunable diode laser calibrated by an optical frequency comb (OFC) and an interferometric phase measurement system. The laser frequency-sweeping process is calibrated by the OFC within a range of 200 GHz and an accuracy of 1.3 kHz, which brings about a precise temporal synthetic wavelength of 1.499 mm. The interferometric phase measurement system consisting of the analog signal processing circuit and the digital phase meter achieves a phase difference resolution better than 0.1 deg. As the laser frequency is sweeping, the absolute distance can be determined by measuring the phase difference variation of the interference signals. In the laboratory condition, our experimental scheme realizes micrometer accuracy over meter distance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Manske, G. Jäge, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
    [CrossRef]
  2. G. Cella and A. Giazotto, “Invited review article: interferometric gravity wave detectors,” Rev. Sci. Instrum. 82, 101101(2011).
    [CrossRef]
  3. N. A. Massie, R. D. Nelson, and S. Holly, “High-performance real-time heterodyne interferometry,” Appl. Opt. 18, 1797–1803 (1979).
    [CrossRef]
  4. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
    [CrossRef]
  5. M. T. L. Hsu, I. C. M. Littler, D. A. Shaddock, J. Herrmann, R. B. Warrington, and M. B. Gray, “Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters,” Opt. Lett. 35, 4202–4204 (2010).
    [CrossRef]
  6. R. Jang, C.-S. Kang, J.-A. Kim, J. W. Kim, J.-E. Kim, and H. Y. Park, “High-speed measurement of three-dimensional surface profiles up to 10 μm using two-wavelength phase-shifting interferometry utilizing an injection locking technique,” Appl. Opt. 50, 1541–1547 (2011).
    [CrossRef]
  7. R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988).
    [CrossRef]
  8. R. Dändliker, K. Hug, J. Politch, and E. Zimmermann, “High-accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
    [CrossRef]
  9. K. Falaggis, D. P. Towers, and C. E. Towers, “Multiwavelength interferometry: extended range metrology,” Opt. Lett. 34, 950–952 (2009).
    [CrossRef]
  10. X. Dai and K. Seta, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035 (1998).
    [CrossRef]
  11. J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38, 5981–5994 (1999).
    [CrossRef]
  12. J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968–5974 (2006).
    [CrossRef]
  13. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31, 3101–3103 (2006).
    [CrossRef]
  14. Y. Salvadé, N. Schuhler, S. Lévêque, and S. L. Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47, 2715–2720 (2008).
    [CrossRef]
  15. S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20, 095302 (2009).
    [CrossRef]
  16. A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46, 073602 (2007).
    [CrossRef]
  17. K. Falaggis, D. P. Towers, and C. E. Towers, “Method of excess fractions with application to absolute distance metrology: theoretical analysis,” Appl. Opt. 50, 5484–5498 (2011).
    [CrossRef]
  18. X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83, 073107 (2012).
    [CrossRef]

2012

E. Manske, G. Jäge, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83, 073107 (2012).
[CrossRef]

2011

2010

2009

K. Falaggis, D. P. Towers, and C. E. Towers, “Multiwavelength interferometry: extended range metrology,” Opt. Lett. 34, 950–952 (2009).
[CrossRef]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20, 095302 (2009).
[CrossRef]

2008

2007

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46, 073602 (2007).
[CrossRef]

2006

1999

1998

X. Dai and K. Seta, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035 (1998).
[CrossRef]

1995

R. Dändliker, K. Hug, J. Politch, and E. Zimmermann, “High-accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

1988

1979

1974

Brangaccio, D. J.

Bruning, J. H.

Cabral, A.

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46, 073602 (2007).
[CrossRef]

Cella, G.

G. Cella and A. Giazotto, “Invited review article: interferometric gravity wave detectors,” Rev. Sci. Instrum. 82, 101101(2011).
[CrossRef]

Dai, X.

X. Dai and K. Seta, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035 (1998).
[CrossRef]

Dändliker, R.

Falaggis, K.

Floch, S. L.

Füßl, R.

E. Manske, G. Jäge, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

Gallagher, J. E.

Giazotto, A.

G. Cella and A. Giazotto, “Invited review article: interferometric gravity wave detectors,” Rev. Sci. Instrum. 82, 101101(2011).
[CrossRef]

Gray, M. B.

Hausotte, T.

E. Manske, G. Jäge, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

Herriott, D. R.

Herrmann, J.

Holly, S.

Holzwarth, R.

Howard, L.

Hsu, M. T. L.

Hug, K.

R. Dändliker, K. Hug, J. Politch, and E. Zimmermann, “High-accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

Hyun, S.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20, 095302 (2009).
[CrossRef]

Jäge, G.

E. Manske, G. Jäge, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

Jang, R.

Jin, J.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20, 095302 (2009).
[CrossRef]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968–5974 (2006).
[CrossRef]

Kang, C.-S.

Kim, J. W.

Kim, J.-A.

Kim, J.-E.

Kim, S.-W.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20, 095302 (2009).
[CrossRef]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968–5974 (2006).
[CrossRef]

Kim, Y.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20, 095302 (2009).
[CrossRef]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968–5974 (2006).
[CrossRef]

Kim, Y.-J.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20, 095302 (2009).
[CrossRef]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968–5974 (2006).
[CrossRef]

Lévêque, S.

Li, Y.

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83, 073107 (2012).
[CrossRef]

Littler, I. C. M.

Manske, E.

E. Manske, G. Jäge, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

Massie, N. A.

Nelson, R. D.

Park, H. Y.

Politch, J.

R. Dändliker, K. Hug, J. Politch, and E. Zimmermann, “High-accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

Prongué, D.

Rebordão, J.

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46, 073602 (2007).
[CrossRef]

Rosenfeld, D. P.

Salvadé, Y.

Schuhler, N.

Seta, K.

X. Dai and K. Seta, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035 (1998).
[CrossRef]

Shaddock, D. A.

Stejskal, A.

Stone, J. A.

Thalmann, R.

Towers, C. E.

Towers, D. P.

Warrington, R. B.

Wei, H.

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83, 073107 (2012).
[CrossRef]

White, A. D.

Wu, X.

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83, 073107 (2012).
[CrossRef]

Zhang, J.

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83, 073107 (2012).
[CrossRef]

Zimmermann, E.

R. Dändliker, K. Hug, J. Politch, and E. Zimmermann, “High-accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

Appl. Opt.

Meas. Sci. Technol.

X. Dai and K. Seta, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031–1035 (1998).
[CrossRef]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20, 095302 (2009).
[CrossRef]

E. Manske, G. Jäge, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

Opt. Eng.

R. Dändliker, K. Hug, J. Politch, and E. Zimmermann, “High-accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46, 073602 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

G. Cella and A. Giazotto, “Invited review article: interferometric gravity wave detectors,” Rev. Sci. Instrum. 82, 101101(2011).
[CrossRef]

X. Wu, J. Zhang, H. Wei, and Y. Li, “Phase-shifting interferometer using a frequency-tunable diode laser calibrated by an optical frequency comb,” Rev. Sci. Instrum. 83, 073107 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. FI, Faraday isolator; C, collimators; 1×3, polarization maintain fiber coupler; PMF, polarization maintain fibers; 1/2, half-wave plate; PBS, polarizing beam splitter; AOM, acoustic optical modulators; M, mirrors; BS, beam splitters; LI, linear interferometer; CC, corner cube; P, polarizer; PD, photodetector; and WM, wavelength meter.

Fig. 2.
Fig. 2.

(a) Spectrum of the split frequency. (b) Variation of the split frequency. The mean frequency is 2 MHz and the standard deviation is 0.07 Hz.

Fig. 3.
Fig. 3.

(a) Repetition rate variation of the OFC. The mean frequency is 250 MHz and the standard deviation is 0.3 mHz. (b) Offset rate variation of the OFC. The mean frequency is 20 MHz and the standard deviation is 0.5 Hz. (c) Beat frequency variation between the locked ECDL and the OFC. The mean frequency is 20 MHz and the standard deviation is 0.6 Hz.

Fig. 4.
Fig. 4.

Frequency of the ECDL sweeps from 473,522,230 to 473,722,230 THz.

Fig. 5.
Fig. 5.

(a) Picture of the signal processing circuit. (b) Picture of the phase meter. (c) Schematic of the interferometric phase measurement system.

Fig. 6.
Fig. 6.

Oscillogram of the reference signals (channel 1 and channel 2) and measurement signals (channel 3 and channel 4). The vertical scales of the sinusoidal signals and the square signals are 1V/div and 4V/div, respectively. The horizontal scale is 200ns/div.

Fig. 7.
Fig. 7.

Fluctuation of the phase difference measured by the interferometric phase measurement system.

Fig. 8.
Fig. 8.

Absolute distance measurement result.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

L=λ2(φ/2π)=λ2(N+ε),
ΔL=λ2(ΔN+Δε),
L=λ12(N1+ε1)=λ22(N2+ε2)==λi2(Ni+εi),
L=λs2(ΔN+Δε)=|λiλj/(λiλj)|2(ΔN+Δε),
L=c2Δυ(ΔN+Δε)=c2|υiυj|(ΔN+Δε),
δ(L)=c2Δνδ(Δε)+c(ΔN+Δε)2(Δν)2δ(Δν),
fECDL=N·fr2·fo+fb,
N1=fcfs·Δφ2π,
N2=fcfs·(1Δφ2π),
Δφ=2π·N1N1+N2.

Metrics