Abstract

This study proposes a high-temperature sensor based on an abrupt fiber-taper Michelson interferometer (FTMI) in single-mode fiber fabricated by a fiber-taper machine and electric-arc discharge. The proposed FTMI is applied to measure temperature and refractive index (RI). A high temperature sensitivity of 118.6pm/°C is obtained in the temperature range of 500°C–800°C. The wavelength variation is only 0.335nm for the maximum attenuation peak, with the external RI changed from 1.333 to 1.3902, which is desirable for high-temperature sensing to eliminate the cross sensitivity to RI.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
    [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef]
  3. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
    [CrossRef]
  4. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
    [CrossRef]
  5. B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol. 44, 640–645 (2012).
    [CrossRef]
  6. T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671(2009).
    [CrossRef]
  7. Y. Li, Y. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach–Zehnder refractive index sensor,” Opt. Express 18, 8135–8143 (2010).
    [CrossRef]
  8. L. Jiang, J. Yang, S. Wang, and M. Wang, “Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36, 3753–3755 (2011).
    [CrossRef]
  9. G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
    [CrossRef]
  10. X. Chen, K. Zhou, L. Zhang, and L. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44, 178–182 (2005).
    [CrossRef]
  11. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
    [CrossRef]
  12. Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30, 711–713 (2005).
    [CrossRef]
  13. Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33, 1105–1107 (2008).
    [CrossRef]
  14. Z. Tian, M. Nix, and S. H. S. Yam, “Laser beam shaping using a single-mode fiber abrupt taper,” Opt. Lett. 34, 229–231 (2009).
    [CrossRef]
  15. B. Dong, L. Wei, and D. P. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48, 6466–6469 (2009).
    [CrossRef]
  16. T. Allsop, R. Reeves, D. J. Webb, and I. Bennion, “A high sensitivity refractometer based upon along period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
    [CrossRef]
  17. B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors,” Sensors 11, 5729–5739 (2011).
    [CrossRef]
  18. O. Frazão, P. Caldas, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Optical flowmeter using a modal interferometer based on a single nonadiabatic fiber taper,” Opt. Lett. 32, 1974–1976 (2007).
    [CrossRef]
  19. C. Belleville, and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18, 78–80 (1993).
    [CrossRef]

2012 (2)

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol. 44, 640–645 (2012).
[CrossRef]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
[CrossRef]

2011 (2)

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors,” Sensors 11, 5729–5739 (2011).
[CrossRef]

L. Jiang, J. Yang, S. Wang, and M. Wang, “Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36, 3753–3755 (2011).
[CrossRef]

2010 (1)

2009 (3)

2008 (1)

2007 (1)

2005 (3)

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

2002 (1)

T. Allsop, R. Reeves, D. J. Webb, and I. Bennion, “A high sensitivity refractometer based upon along period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

1996 (1)

1995 (1)

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
[CrossRef]

1993 (2)

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
[CrossRef]

C. Belleville, and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18, 78–80 (1993).
[CrossRef]

Allsop, T.

T. Allsop, R. Reeves, D. J. Webb, and I. Bennion, “A high sensitivity refractometer based upon along period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Araújo, F. M.

Ball, G. A.

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
[CrossRef]

Bao, X.

Belleville, C.

Bennion, I.

T. Allsop, R. Reeves, D. J. Webb, and I. Bennion, “A high sensitivity refractometer based upon along period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Bennion, L.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

Bhatia, V.

Caldas, P.

Chen, L.

Chen, Q.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol. 44, 640–645 (2012).
[CrossRef]

Chen, X.

Cheo, P. K.

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
[CrossRef]

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

Ding, J. F.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Dong, B.

Duplain, G.

Ferreira, L. A.

Frazão, O.

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

Harris, Y.

He, S.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Hu, D. J. J.

Huang, Z.

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

Jiang, L.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol. 44, 640–645 (2012).
[CrossRef]

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors,” Sensors 11, 5729–5739 (2011).
[CrossRef]

L. Jiang, J. Yang, S. Wang, and M. Wang, “Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36, 3753–3755 (2011).
[CrossRef]

Jiang, M.

Kersey, A. D.

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
[CrossRef]

Koo, K. P.

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
[CrossRef]

Lan, X.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671(2009).
[CrossRef]

Li, B.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol. 44, 640–645 (2012).
[CrossRef]

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors,” Sensors 11, 5729–5739 (2011).
[CrossRef]

Li, Y.

Lim, J. L.

Loock, H. P.

Luan, F.

Morey, W. W.

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
[CrossRef]

Nix, M.

Reeves, R.

T. Allsop, R. Reeves, D. J. Webb, and I. Bennion, “A high sensitivity refractometer based upon along period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Santos, J. L.

Shao, L. Y.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Shen, F.

Shum, P. P.

Tian, Z.

Tong, W.

Tsai, H. L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors,” Sensors 11, 5729–5739 (2011).
[CrossRef]

Vengsarkar, A. M.

Wang, A.

Wang, M.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol. 44, 640–645 (2012).
[CrossRef]

L. Jiang, J. Yang, S. Wang, and M. Wang, “Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36, 3753–3755 (2011).
[CrossRef]

Wang, S.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol. 44, 640–645 (2012).
[CrossRef]

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors,” Sensors 11, 5729–5739 (2011).
[CrossRef]

L. Jiang, J. Yang, S. Wang, and M. Wang, “Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36, 3753–3755 (2011).
[CrossRef]

Wang, Y.

Webb, D. J.

T. Allsop, R. Reeves, D. J. Webb, and I. Bennion, “A high sensitivity refractometer based upon along period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Wei, H.

Wei, L.

Wei, T.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671(2009).
[CrossRef]

Xiao, H.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors,” Sensors 11, 5729–5739 (2011).
[CrossRef]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671(2009).
[CrossRef]

Yam, S. H. S.

Yam, S. S. H.

Yang, J.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol. 44, 640–645 (2012).
[CrossRef]

L. Jiang, J. Yang, S. Wang, and M. Wang, “Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36, 3753–3755 (2011).
[CrossRef]

Zhang, A. P.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Zhang, L.

Zhou, D. P.

Zhou, K.

Zhou, L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors,” Sensors 11, 5729–5739 (2011).
[CrossRef]

Zhu, Y.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (4)

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671(2009).
[CrossRef]

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
[CrossRef]

J. Lightwave Technol. (1)

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol. 44, 640–645 (2012).
[CrossRef]

Opt. Lett. (8)

Rev. Sci. Instrum. (1)

T. Allsop, R. Reeves, D. J. Webb, and I. Bennion, “A high sensitivity refractometer based upon along period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Sensors (1)

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors,” Sensors 11, 5729–5739 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed FTMI.

Fig. 2.
Fig. 2.

Microscopic image of a 3 dB taper made by a fusion splicer and a fiber-taper machine.

Fig. 3.
Fig. 3.

Reflective spectra of the FTMIs with various cone angles.

Fig. 4.
Fig. 4.

Maximum attenuation wavelength shifts of FTMI-1, FTMI-2, and FTMI-3 with the increase of external temperature.

Fig. 5.
Fig. 5.

Wavelength of maximum attenuation peaks around 1508.08 nm before heating, and the wavelength is 1507.92 nm after being cooled down to room temperature for FTMI-1.

Fig. 6.
Fig. 6.

Wavelength shift of the two attenuation peaks due to external RI change, where A and B denote various peaks. The inset shows the changes to the measured spectra.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

φ=4π(nconcl)Lλm,
λm=4ΔneffL/(2m+1).
dλm/dT=[λmΔneff(dncodTdncsdT)+λmLdLdT]/(1λmΔneffΔneffλ).
θ=12(Dd)/h.

Metrics