Abstract

Red-emitting ZnCuInS2 semiconductor nanocrystals (NCs) were synthesized and surface modification was performed on the NCs with oleylamine, trioctylphosphine, and 3-mercaptopropionic acid by the ligand exchange strategy. UV–visible spectroscopy, photoluminescence (PL) spectroscopy, time-resolved PL analysis, and attenuated total reflection Fourier transform infrared spectroscopy were used to verify the surface modification of NCs. Additionally, white light-emitting diodes (LEDs) were fabricated using surface modified red-emitting ZnCuInS2 NCs as red phosphor to compensate for the deficiency of red emission in white LEDs, consisting of blue LEDs as excitation sources and YAG:Ce as yellow phosphor.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. L. Peng, Y. H. Wang, and C. Y. Li, “Ultraviolet-blue photoluminescence of ZnSe quantum dots,” J. Nanosci. Nanotechnol. 10, 2113–2118 (2010).
    [CrossRef]
  2. E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
    [CrossRef]
  3. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
    [CrossRef]
  4. A. F. E. Hezinger, J. Tessmar, and A. Göpferich, “Polymer coating of quantum dots—a powerful tool toward diagnostics and sensorics,” Eur. J. Pharm. Biopharm. 68, 138–152 (2008).
    [CrossRef]
  5. K. Nose, Y. Soma, T. Omata, and S. Otsuka-Yao-Matsuo, “Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species,” Chem. Mater. 21, 2607–2613 (2009).
    [CrossRef]
  6. W. Chung, K. Park, H. J. Yu, J. Kim, B.-H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Opt. Materials 32, 515–521 (2010).
    [CrossRef]
  7. W. Chung, H. Jung, C. H. Lee, and S. H. Kim, “Fabrication of high color rendering index white LED using Cd-free wavelength tunable Zn doped CuInS2 nanocrystals,” Opt. Express 20, 25071–25076 (2012).
    [CrossRef]
  8. L. Shen, “Biocompatible polymer/quantum dots hybrid materials: current status and future developments,” J. Funct. Biomater. 2, 355–372 (2011).
    [CrossRef]
  9. A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
    [CrossRef]
  10. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
    [CrossRef]
  11. S. Sadhu, P. Saha Chowdhury, and A. Patra, “Synthesis and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals,” J. Lumin. 128, 1235–1240 (2008).
    [CrossRef]
  12. M. J. Greaney, S. Das, D. H. Webber, S. E. Bradforth, and R. L. Brutchey, “Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange,” ACS Nano 6, 4222–4230(2012).
    [CrossRef]
  13. H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
    [CrossRef]
  14. K.-T. Kuo, S.-H. Hu, D.-M. Liu, and S.-Y. Chen, “Magnetically-induced synthesis of highly-crystalline ternary chalcopyrite nanocrystals under ambient conditions,” J. Mater. Chem. 20, 1744–1750 (2010).
    [CrossRef]
  15. I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, “Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine,” J. Phys. Chem. C 114, 12784–12791 (2010).
    [CrossRef]
  16. X. W. Sun, J. Chen, J. L. Song, D. W. Zhao, W. Q. Deng, and W. Lei, “Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode,” Opt. Express 18, 1296–1301 (2010).
    [CrossRef]
  17. I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
    [CrossRef]
  18. H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
    [CrossRef]
  19. W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
    [CrossRef]
  20. J. Y. Zhang and X. Zhang, “Size-dependent time-resolved photoluminescence of colloidal CdSe nanocrystals,” J. Phys. Chem. C 113, 9512–9515 (2009).
    [CrossRef]
  21. J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. 47, 6422–6424 (2011).
    [CrossRef]

2012

M. J. Greaney, S. Das, D. H. Webber, S. E. Bradforth, and R. L. Brutchey, “Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange,” ACS Nano 6, 4222–4230(2012).
[CrossRef]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

W. Chung, H. Jung, C. H. Lee, and S. H. Kim, “Fabrication of high color rendering index white LED using Cd-free wavelength tunable Zn doped CuInS2 nanocrystals,” Opt. Express 20, 25071–25076 (2012).
[CrossRef]

2011

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. 47, 6422–6424 (2011).
[CrossRef]

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

L. Shen, “Biocompatible polymer/quantum dots hybrid materials: current status and future developments,” J. Funct. Biomater. 2, 355–372 (2011).
[CrossRef]

2010

K.-T. Kuo, S.-H. Hu, D.-M. Liu, and S.-Y. Chen, “Magnetically-induced synthesis of highly-crystalline ternary chalcopyrite nanocrystals under ambient conditions,” J. Mater. Chem. 20, 1744–1750 (2010).
[CrossRef]

I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, “Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine,” J. Phys. Chem. C 114, 12784–12791 (2010).
[CrossRef]

L. L. Peng, Y. H. Wang, and C. Y. Li, “Ultraviolet-blue photoluminescence of ZnSe quantum dots,” J. Nanosci. Nanotechnol. 10, 2113–2118 (2010).
[CrossRef]

W. Chung, K. Park, H. J. Yu, J. Kim, B.-H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Opt. Materials 32, 515–521 (2010).
[CrossRef]

X. W. Sun, J. Chen, J. L. Song, D. W. Zhao, W. Q. Deng, and W. Lei, “Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode,” Opt. Express 18, 1296–1301 (2010).
[CrossRef]

2009

J. Y. Zhang and X. Zhang, “Size-dependent time-resolved photoluminescence of colloidal CdSe nanocrystals,” J. Phys. Chem. C 113, 9512–9515 (2009).
[CrossRef]

K. Nose, Y. Soma, T. Omata, and S. Otsuka-Yao-Matsuo, “Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species,” Chem. Mater. 21, 2607–2613 (2009).
[CrossRef]

2008

A. F. E. Hezinger, J. Tessmar, and A. Göpferich, “Polymer coating of quantum dots—a powerful tool toward diagnostics and sensorics,” Eur. J. Pharm. Biopharm. 68, 138–152 (2008).
[CrossRef]

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
[CrossRef]

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
[CrossRef]

S. Sadhu, P. Saha Chowdhury, and A. Patra, “Synthesis and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals,” J. Lumin. 128, 1235–1240 (2008).
[CrossRef]

2007

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

2006

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
[CrossRef]

2005

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

2004

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

Amenitsch, H.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Aydil, E. S.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

Bae, W. K.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Basu, J.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

Bereznev, S.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Boercker, J. E.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

Borchert, H.

I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, “Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine,” J. Phys. Chem. C 114, 12784–12791 (2010).
[CrossRef]

Bradforth, S. E.

M. J. Greaney, S. Das, D. H. Webber, S. E. Bradforth, and R. L. Brutchey, “Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange,” ACS Nano 6, 4222–4230(2012).
[CrossRef]

Brutchey, R. L.

M. J. Greaney, S. Das, D. H. Webber, S. E. Bradforth, and R. L. Brutchey, “Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange,” ACS Nano 6, 4222–4230(2012).
[CrossRef]

Carter, C. B.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

Chang, W. H.

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Char, K.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Chen, C.-W.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
[CrossRef]

Chen, J.

Chen, S.-Y.

K.-T. Kuo, S.-H. Hu, D.-M. Liu, and S.-Y. Chen, “Magnetically-induced synthesis of highly-crystalline ternary chalcopyrite nanocrystals under ambient conditions,” J. Mater. Chem. 20, 1744–1750 (2010).
[CrossRef]

Chen, Y.-F.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
[CrossRef]

Chien, C.-T.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
[CrossRef]

Cho, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Chou, W. C.

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Chun, B.-H.

W. Chung, K. Park, H. J. Yu, J. Kim, B.-H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Opt. Materials 32, 515–521 (2010).
[CrossRef]

Chung, W.

W. Chung, H. Jung, C. H. Lee, and S. H. Kim, “Fabrication of high color rendering index white LED using Cd-free wavelength tunable Zn doped CuInS2 nanocrystals,” Opt. Express 20, 25071–25076 (2012).
[CrossRef]

W. Chung, K. Park, H. J. Yu, J. Kim, B.-H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Opt. Materials 32, 515–521 (2010).
[CrossRef]

Das, S.

M. J. Greaney, S. Das, D. H. Webber, S. E. Bradforth, and R. L. Brutchey, “Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange,” ACS Nano 6, 4222–4230(2012).
[CrossRef]

Deng, W. Q.

Divakar, R.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

Enache-pommer, E.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

Feng, J.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. 47, 6422–6424 (2011).
[CrossRef]

Fujioka, K.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

Göpferich, A.

A. F. E. Hezinger, J. Tessmar, and A. Göpferich, “Polymer coating of quantum dots—a powerful tool toward diagnostics and sensorics,” Eur. J. Pharm. Biopharm. 68, 138–152 (2008).
[CrossRef]

Greaney, M. J.

M. J. Greaney, S. Das, D. H. Webber, S. E. Bradforth, and R. L. Brutchey, “Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange,” ACS Nano 6, 4222–4230(2012).
[CrossRef]

Haas, W.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

He, C.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
[CrossRef]

He, Y.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
[CrossRef]

Hezinger, A. F. E.

A. F. E. Hezinger, J. Tessmar, and A. Göpferich, “Polymer coating of quantum dots—a powerful tool toward diagnostics and sensorics,” Eur. J. Pharm. Biopharm. 68, 138–152 (2008).
[CrossRef]

Hofer, F.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Hoshino, A.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

Hu, S.-H.

K.-T. Kuo, S.-H. Hu, D.-M. Liu, and S.-Y. Chen, “Magnetically-induced synthesis of highly-crystalline ternary chalcopyrite nanocrystals under ambient conditions,” J. Mater. Chem. 20, 1744–1750 (2010).
[CrossRef]

Jung, H.

Kato, W.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
[CrossRef]

Kim, J.

W. Chung, K. Park, H. J. Yu, J. Kim, B.-H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Opt. Materials 32, 515–521 (2010).
[CrossRef]

Kim, S. H.

W. Chung, H. Jung, C. H. Lee, and S. H. Kim, “Fabrication of high color rendering index white LED using Cd-free wavelength tunable Zn doped CuInS2 nanocrystals,” Opt. Express 20, 25071–25076 (2012).
[CrossRef]

W. Chung, K. Park, H. J. Yu, J. Kim, B.-H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Opt. Materials 32, 515–521 (2010).
[CrossRef]

Kolny-Olesiak, J.

I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, “Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine,” J. Phys. Chem. C 114, 12784–12791 (2010).
[CrossRef]

Kortshagen, U. R.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

Kuo, K.-T.

K.-T. Kuo, S.-H. Hu, D.-M. Liu, and S.-Y. Chen, “Magnetically-induced synthesis of highly-crystalline ternary chalcopyrite nanocrystals under ambient conditions,” J. Mater. Chem. 20, 1744–1750 (2010).
[CrossRef]

Kwak, J.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Lee, C.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Lee, C. H.

Lee, D.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Lee, S.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Lee, W. Z.

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Lee, Y. C.

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Lei, W.

Leschkies, K. S.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

Li, C. Y.

L. L. Peng, Y. H. Wang, and C. Y. Li, “Ultraviolet-blue photoluminescence of ZnSe quantum dots,” J. Nanosci. Nanotechnol. 10, 2113–2118 (2010).
[CrossRef]

Li, Y.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
[CrossRef]

Lim, J.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Lin, C. a

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Lin, Y.-Y.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
[CrossRef]

Liou, S.-C.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
[CrossRef]

Liu, D.-M.

K.-T. Kuo, S.-H. Hu, D.-M. Liu, and S.-Y. Chen, “Magnetically-induced synthesis of highly-crystalline ternary chalcopyrite nanocrystals under ambient conditions,” J. Mater. Chem. 20, 1744–1750 (2010).
[CrossRef]

Liu, I.-S.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
[CrossRef]

Lo, H.-H.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
[CrossRef]

Lokteva, I.

I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, “Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine,” J. Phys. Chem. C 114, 12784–12791 (2010).
[CrossRef]

Lu, C. H.

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Maeda, H.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
[CrossRef]

Maier, E.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Meissner, D.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Mellikov, E.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Miyazaki, M.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
[CrossRef]

Nakamura, H.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
[CrossRef]

Norris, D. J.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

Nose, K.

K. Nose, Y. Soma, T. Omata, and S. Otsuka-Yao-Matsuo, “Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species,” Chem. Mater. 21, 2607–2613 (2009).
[CrossRef]

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
[CrossRef]

Ohta, T.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

Oku, T.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

Omata, T.

K. Nose, Y. Soma, T. Omata, and S. Otsuka-Yao-Matsuo, “Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species,” Chem. Mater. 21, 2607–2613 (2009).
[CrossRef]

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
[CrossRef]

Otsuka-Yao-Matsuo, S.

K. Nose, Y. Soma, T. Omata, and S. Otsuka-Yao-Matsuo, “Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species,” Chem. Mater. 21, 2607–2613 (2009).
[CrossRef]

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
[CrossRef]

Parisi, J.

I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, “Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine,” J. Phys. Chem. C 114, 12784–12791 (2010).
[CrossRef]

Park, I.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Park, K.

W. Chung, K. Park, H. J. Yu, J. Kim, B.-H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Opt. Materials 32, 515–521 (2010).
[CrossRef]

Park, M.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Patra, A.

S. Sadhu, P. Saha Chowdhury, and A. Patra, “Synthesis and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals,” J. Lumin. 128, 1235–1240 (2008).
[CrossRef]

Peng, L. L.

L. L. Peng, Y. H. Wang, and C. Y. Li, “Ultraviolet-blue photoluminescence of ZnSe quantum dots,” J. Nanosci. Nanotechnol. 10, 2113–2118 (2010).
[CrossRef]

Radychev, N.

I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, “Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine,” J. Phys. Chem. C 114, 12784–12791 (2010).
[CrossRef]

Rath, T.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Resel, R.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Ruaan, R. C.

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Sadhu, S.

S. Sadhu, P. Saha Chowdhury, and A. Patra, “Synthesis and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals,” J. Lumin. 128, 1235–1240 (2008).
[CrossRef]

Saf, R.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Saha Chowdhury, P.

S. Sadhu, P. Saha Chowdhury, and A. Patra, “Synthesis and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals,” J. Lumin. 128, 1235–1240 (2008).
[CrossRef]

Sasaki, Y. F.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

Shen, J. L.

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Shen, L.

L. Shen, “Biocompatible polymer/quantum dots hybrid materials: current status and future developments,” J. Funct. Biomater. 2, 355–372 (2011).
[CrossRef]

Shu, G. W.

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Soma, Y.

K. Nose, Y. Soma, T. Omata, and S. Otsuka-Yao-Matsuo, “Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species,” Chem. Mater. 21, 2607–2613 (2009).
[CrossRef]

Song, J. L.

Su, W.-F.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
[CrossRef]

Suga, M.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

Sun, M.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. 47, 6422–6424 (2011).
[CrossRef]

Sun, X. W.

Suzuki, K.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

Tessmar, J.

A. F. E. Hezinger, J. Tessmar, and A. Göpferich, “Polymer coating of quantum dots—a powerful tool toward diagnostics and sensorics,” Eur. J. Pharm. Biopharm. 68, 138–152 (2008).
[CrossRef]

Trimmel, G.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Uehara, M.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
[CrossRef]

Volobujeva, O.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Wang, J. S.

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Wang, Y. H.

L. L. Peng, Y. H. Wang, and C. Y. Li, “Ultraviolet-blue photoluminescence of ZnSe quantum dots,” J. Nanosci. Nanotechnol. 10, 2113–2118 (2010).
[CrossRef]

Webber, D. H.

M. J. Greaney, S. Das, D. H. Webber, S. E. Bradforth, and R. L. Brutchey, “Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange,” ACS Nano 6, 4222–4230(2012).
[CrossRef]

Werzer, O.

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Witt, F.

I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, “Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine,” J. Phys. Chem. C 114, 12784–12791 (2010).
[CrossRef]

Woo, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Yamamoto, K.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

Yang, C.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
[CrossRef]

Yang, F.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. 47, 6422–6424 (2011).
[CrossRef]

Yang, X.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. 47, 6422–6424 (2011).
[CrossRef]

Yasuhara, M.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

Ye, J.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
[CrossRef]

Ye, M.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
[CrossRef]

Yoon, D. Y.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Yu, H. J.

W. Chung, K. Park, H. J. Yu, J. Kim, B.-H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Opt. Materials 32, 515–521 (2010).
[CrossRef]

Zhang, J. Y.

J. Y. Zhang and X. Zhang, “Size-dependent time-resolved photoluminescence of colloidal CdSe nanocrystals,” J. Phys. Chem. C 113, 9512–9515 (2009).
[CrossRef]

Zhang, X.

J. Y. Zhang and X. Zhang, “Size-dependent time-resolved photoluminescence of colloidal CdSe nanocrystals,” J. Phys. Chem. C 113, 9512–9515 (2009).
[CrossRef]

Zhao, D. W.

Zhong, H.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
[CrossRef]

Zhou, Y.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
[CrossRef]

ACS Nano

M. J. Greaney, S. Das, D. H. Webber, S. E. Bradforth, and R. L. Brutchey, “Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange,” ACS Nano 6, 4222–4230(2012).
[CrossRef]

Chem. Commun.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. 47, 6422–6424 (2011).
[CrossRef]

Chem. Mater.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater. 18, 3330–3335 (2006).
[CrossRef]

K. Nose, Y. Soma, T. Omata, and S. Otsuka-Yao-Matsuo, “Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species,” Chem. Mater. 21, 2607–2613 (2009).
[CrossRef]

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20, 6434–6443 (2008).
[CrossRef]

Eur. J. Pharm. Biopharm.

A. F. E. Hezinger, J. Tessmar, and A. Göpferich, “Polymer coating of quantum dots—a powerful tool toward diagnostics and sensorics,” Eur. J. Pharm. Biopharm. 68, 138–152 (2008).
[CrossRef]

J. Funct. Biomater.

L. Shen, “Biocompatible polymer/quantum dots hybrid materials: current status and future developments,” J. Funct. Biomater. 2, 355–372 (2011).
[CrossRef]

J. Lumin.

S. Sadhu, P. Saha Chowdhury, and A. Patra, “Synthesis and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals,” J. Lumin. 128, 1235–1240 (2008).
[CrossRef]

J. Mater. Chem.

I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, “Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands,” J. Mater. Chem. 18, 675–682 (2008).
[CrossRef]

K.-T. Kuo, S.-H. Hu, D.-M. Liu, and S.-Y. Chen, “Magnetically-induced synthesis of highly-crystalline ternary chalcopyrite nanocrystals under ambient conditions,” J. Mater. Chem. 20, 1744–1750 (2010).
[CrossRef]

J. Nanosci. Nanotechnol.

L. L. Peng, Y. H. Wang, and C. Y. Li, “Ultraviolet-blue photoluminescence of ZnSe quantum dots,” J. Nanosci. Nanotechnol. 10, 2113–2118 (2010).
[CrossRef]

J. Phys. Chem. C

I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, “Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine,” J. Phys. Chem. C 114, 12784–12791 (2010).
[CrossRef]

J. Y. Zhang and X. Zhang, “Size-dependent time-resolved photoluminescence of colloidal CdSe nanocrystals,” J. Phys. Chem. C 113, 9512–9515 (2009).
[CrossRef]

Nano Lett.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification,” Nano Lett. 4, 2163–2169 (2004).
[CrossRef]

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7, 2–7 (2007).
[CrossRef]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12, 2362–2366 (2012).
[CrossRef]

Nanotechnology

W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. a Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, C. H. Lu, and Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16, 1517–1521 (2005).
[CrossRef]

Opt. Express

Opt. Materials

W. Chung, K. Park, H. J. Yu, J. Kim, B.-H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Opt. Materials 32, 515–521 (2010).
[CrossRef]

Solar Energy Mater. Solar Cells

E. Maier, T. Rath, W. Haas, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, and G. Trimmel, “CuInS2–Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Mater. Solar Cells 95, 1354–1361 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) UV–visible absorption spectra of ZCIS NCs with different ligands. (b) PL emission spectra of ZCIS NCs with different ligands.

Fig. 2.
Fig. 2.

PL decay curves of ZCIS NCs with different ligands.

Fig. 3.
Fig. 3.

ATR-FTIR spectra of (a) OAm-capped, (b) TOP-capped, and (c) MPA-capped ZCIS NCs.

Fig. 4.
Fig. 4.

(a) Powder XRD patterns of ZCIS NCs. (b) TEM images of ZCIS NCs.

Fig. 5.
Fig. 5.

(a) Comparison of emission spectra between a YAG:Ce white LED and a YAG:Ce/ZCIS NCs hybridized white LED. (b) Emission spectra of the hybridized white LED with varying injection current from 10 to 40 mA.

Tables (1)

Tables Icon

Table 1. PL Decay Parameters of ZCIS NCs with Different Ligands

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

QY=QYSt110ASt110A×η2ηSt2×IISt,
I(t)=A1exp(t/τ1)+A2exp(t/τ2),

Metrics