Abstract

Velocity measurements in the vicinity of an obstacle remain very complicated even when optical diagnostics based on displacement of micrometric tracers are considered. In the present paper, digital in-line holography with a divergent beam is proposed to measure the three-dimensional (3D) velocity vector fields in a turbulent boundary layer and, in particular, on the near wall region of a wind tunnel. The seeding droplets (1–5 μm) transported by a turbulent airflow are illuminated by a couple of laser pulses coming from a fiber coupled laser diode. These double exposure holograms are then recorded through a transparent glass reticle specially designed for this application with an accurate surface positioning combined with a particularly attractive in situ calibration method of the investigation volume (less than 10mm3). The method used for processing holograms recorded in such a configuration is detailed. Our original calibration procedure and the assessment of its accuracy are presented. Our holographic probe has been tested in a wind tunnel for a large range of different velocities. Then 3D velocity vector fields extracted from more than 13000 holograms are analyzed. Statistical results show the capability of our approach to access in a turbulent boundary layer. In particular, it leads to relevant measurements for fluid mechanics such as velocity fluctuation and the shear stress in the very close vicinity of a wall.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Buraga, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three dimensional location of particles,” Opt. Lasers Eng. 33, 409–421(2000).
    [CrossRef]
  2. S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392–1397 (2001).
    [CrossRef]
  3. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
    [CrossRef]
  4. S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
    [CrossRef]
  5. M. Malek, D. Lebrun, and D. Allano, “Digital in-line holography system for 3D-3C particle tracking velocimetry,” Appl. Phys. 112, 151–166 (2008).
  6. N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coetmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow,” Meas. Sci. Technol. 19, 074001 (2008).
    [CrossRef]
  7. S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44, 623–631 (2008).
    [CrossRef]
  8. J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
    [CrossRef]
  9. Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt. 48, 7000–7007 (2009).
    [CrossRef]
  10. N. Verrier, C. Rémacha, S. Coëtmellec, M. Brunel, and D. Lebrun, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010).
    [CrossRef]
  11. S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647–1651 (2006).
    [CrossRef]
  12. D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).
    [CrossRef]
  13. S. Große and W. Schröder, “The micro-pillar shear-stress sensor MPS3 for turbulent flow,” Sensors 9, 2222–2251(2009).
    [CrossRef]
  14. G. Pailhas, P. Barricau, Y. Touvet, and L. Perret, “Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method,” Exp. Fluids 47, 195–207 (2009).
    [CrossRef]
  15. J. D. Ruedi, H. Nagib, J. Österlund, and P. A. Monkewitz, “Evaluation of three techniques for wall-shear measurements in three-dimensional flows,” Exp. Fluids 35, 389–396 (2003).
    [CrossRef]
  16. J. Sheng, E. Malkiel, and A. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
    [CrossRef]
  17. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef]
  18. D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
    [CrossRef]
  19. D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Euro Opt. Soc. 6, 11034 (2011).
    [CrossRef]
  20. W. Xu, M. H. Jericho, and H. J. Kreuzer, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003).
    [CrossRef]
  21. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef]
  22. C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik 78, 80–83 (1988).
  23. C. Atkinson, S. Coudert, J.-M. Foucaut, M. Stanislas, and J. Soria, “The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer,” Exp. Fluids 50, 1031–1056 (2011).
    [CrossRef]
  24. T. Kreis, Handbook of Holographic Interferometry, Optical and Digital Methods (Wiley-VCH, 2005).
  25. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009).
    [CrossRef]
  26. S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of the two-dimensional fractional-orders Fourier transformation to particle field digital holography,” J. Opt. Soc. Am. A 19, 1537–1546 (2002).
    [CrossRef]
  27. L. Onural, “Diffraction from a wavelet point of view,” Opt. Lett. 18, 846–848 (1993).
    [CrossRef]
  28. L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929–5935 (2000).
    [CrossRef]
  29. D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801–095814 (2009).
    [CrossRef]
  30. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
    [CrossRef]
  31. Y. Zhang, G. Shen, A. Schröder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).
    [CrossRef]
  32. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006).
    [CrossRef]
  33. G. Pan and H. Meng, “Digital holography of particle fields: Reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
    [CrossRef]
  34. W. Yang, A. B. Kostinski, and R. A. Shaw, “Phase signature form particle detection with digital in-line holography,” Opt. Lett. 31, 1399–1401 (2006).
    [CrossRef]

2011 (3)

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Euro Opt. Soc. 6, 11034 (2011).
[CrossRef]

C. Atkinson, S. Coudert, J.-M. Foucaut, M. Stanislas, and J. Soria, “The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer,” Exp. Fluids 50, 1031–1056 (2011).
[CrossRef]

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
[CrossRef]

2010 (1)

2009 (5)

L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009).
[CrossRef]

Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt. 48, 7000–7007 (2009).
[CrossRef]

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801–095814 (2009).
[CrossRef]

S. Große and W. Schröder, “The micro-pillar shear-stress sensor MPS3 for turbulent flow,” Sensors 9, 2222–2251(2009).
[CrossRef]

G. Pailhas, P. Barricau, Y. Touvet, and L. Perret, “Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method,” Exp. Fluids 47, 195–207 (2009).
[CrossRef]

2008 (6)

M. Malek, D. Lebrun, and D. Allano, “Digital in-line holography system for 3D-3C particle tracking velocimetry,” Appl. Phys. 112, 151–166 (2008).

N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coetmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow,” Meas. Sci. Technol. 19, 074001 (2008).
[CrossRef]

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44, 623–631 (2008).
[CrossRef]

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[CrossRef]

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
[CrossRef]

J. Sheng, E. Malkiel, and A. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[CrossRef]

2006 (6)

2005 (1)

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

2004 (1)

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

2003 (3)

2002 (2)

S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of the two-dimensional fractional-orders Fourier transformation to particle field digital holography,” J. Opt. Soc. Am. A 19, 1537–1546 (2002).
[CrossRef]

D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).
[CrossRef]

2001 (1)

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392–1397 (2001).
[CrossRef]

2000 (2)

C. Buraga, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three dimensional location of particles,” Opt. Lasers Eng. 33, 409–421(2000).
[CrossRef]

L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929–5935 (2000).
[CrossRef]

1993 (1)

1988 (1)

C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik 78, 80–83 (1988).

Allano, D.

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
[CrossRef]

M. Malek, D. Lebrun, and D. Allano, “Digital in-line holography system for 3D-3C particle tracking velocimetry,” Appl. Phys. 112, 151–166 (2008).

N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coetmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow,” Meas. Sci. Technol. 19, 074001 (2008).
[CrossRef]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

Atkinson, C.

C. Atkinson, S. Coudert, J.-M. Foucaut, M. Stanislas, and J. Soria, “The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer,” Exp. Fluids 50, 1031–1056 (2011).
[CrossRef]

Barricau, P.

G. Pailhas, P. Barricau, Y. Touvet, and L. Perret, “Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method,” Exp. Fluids 47, 195–207 (2009).
[CrossRef]

Billet, M. L.

C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik 78, 80–83 (1988).

Boucheron, R.

Brunel, M.

Buraga, C.

C. Buraga, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three dimensional location of particles,” Opt. Lasers Eng. 33, 409–421(2000).
[CrossRef]

Buraga-Lefebvre, C.

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392–1397 (2001).
[CrossRef]

Callens, N.

Cen, K. F.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

Chen, Y.

Coetmellec, S.

N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coetmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow,” Meas. Sci. Technol. 19, 074001 (2008).
[CrossRef]

Coëtmellec, S.

N. Verrier, C. Rémacha, S. Coëtmellec, M. Brunel, and D. Lebrun, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010).
[CrossRef]

S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of the two-dimensional fractional-orders Fourier transformation to particle field digital holography,” J. Opt. Soc. Am. A 19, 1537–1546 (2002).
[CrossRef]

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392–1397 (2001).
[CrossRef]

C. Buraga, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three dimensional location of particles,” Opt. Lasers Eng. 33, 409–421(2000).
[CrossRef]

Corbin, F.

Coudert, S.

C. Atkinson, S. Coudert, J.-M. Foucaut, M. Stanislas, and J. Soria, “The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer,” Exp. Fluids 50, 1031–1056 (2011).
[CrossRef]

Denis, L.

Dubois, F.

Foucaut, J.-M.

C. Atkinson, S. Coudert, J.-M. Foucaut, M. Stanislas, and J. Soria, “The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer,” Exp. Fluids 50, 1031–1056 (2011).
[CrossRef]

Fournier, C.

Fréchou, D.

Fugal, J. P.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[CrossRef]

Gao, Y.

Garcia-Sucerquia, J.

Ge, B.

Godard, G.

N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coetmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow,” Meas. Sci. Technol. 19, 074001 (2008).
[CrossRef]

Große, S.

S. Große and W. Schröder, “The micro-pillar shear-stress sensor MPS3 for turbulent flow,” Sensors 9, 2222–2251(2009).
[CrossRef]

Healy, J. J.

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Euro Opt. Soc. 6, 11034 (2011).
[CrossRef]

Hennelly, B. M.

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Euro Opt. Soc. 6, 11034 (2011).
[CrossRef]

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801–095814 (2009).
[CrossRef]

Ito, T.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647–1651 (2006).
[CrossRef]

Jericho, M. H.

Jericho, S. K.

Kanamori, H.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647–1651 (2006).
[CrossRef]

Katz, A.

J. Sheng, E. Malkiel, and A. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[CrossRef]

Katz, J.

Kelly, D. P.

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Euro Opt. Soc. 6, 11034 (2011).
[CrossRef]

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801–095814 (2009).
[CrossRef]

Kim, S.

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44, 623–631 (2008).
[CrossRef]

Klages, P.

Kompenhans, J.

Y. Zhang, G. Shen, A. Schröder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).
[CrossRef]

Kostinski, A. B.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry, Optical and Digital Methods (Wiley-VCH, 2005).

Kreuzer, H. J.

Kreuzer, J.

Kunugi, T.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647–1651 (2006).
[CrossRef]

Lebrun, D.

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
[CrossRef]

N. Verrier, C. Rémacha, S. Coëtmellec, M. Brunel, and D. Lebrun, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010).
[CrossRef]

N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coetmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow,” Meas. Sci. Technol. 19, 074001 (2008).
[CrossRef]

M. Malek, D. Lebrun, and D. Allano, “Digital in-line holography system for 3D-3C particle tracking velocimetry,” Appl. Phys. 112, 151–166 (2008).

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of the two-dimensional fractional-orders Fourier transformation to particle field digital holography,” J. Opt. Soc. Am. A 19, 1537–1546 (2002).
[CrossRef]

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392–1397 (2001).
[CrossRef]

C. Buraga, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three dimensional location of particles,” Opt. Lasers Eng. 33, 409–421(2000).
[CrossRef]

Lee, S. J.

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44, 623–631 (2008).
[CrossRef]

Leval, J.

Lorenz, D.

Lu, J.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[CrossRef]

Lü, Q.

Malek, M.

M. Malek, D. Lebrun, and D. Allano, “Digital in-line holography system for 3D-3C particle tracking velocimetry,” Appl. Phys. 112, 151–166 (2008).

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

Malkiel, E.

J. Sheng, E. Malkiel, and A. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

Méès, L.

Meng, H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: Reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
[CrossRef]

Monkewitz, P. A.

J. D. Ruedi, H. Nagib, J. Österlund, and P. A. Monkewitz, “Evaluation of three techniques for wall-shear measurements in three-dimensional flows,” Exp. Fluids 35, 389–396 (2003).
[CrossRef]

Nagib, H.

J. D. Ruedi, H. Nagib, J. Österlund, and P. A. Monkewitz, “Evaluation of three techniques for wall-shear measurements in three-dimensional flows,” Exp. Fluids 35, 389–396 (2003).
[CrossRef]

Naughton, T. J.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801–095814 (2009).
[CrossRef]

Nordsiek, H.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[CrossRef]

Onural, L.

Österlund, J.

J. D. Ruedi, H. Nagib, J. Österlund, and P. A. Monkewitz, “Evaluation of three techniques for wall-shear measurements in three-dimensional flows,” Exp. Fluids 35, 389–396 (2003).
[CrossRef]

Özkul, C.

S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of the two-dimensional fractional-orders Fourier transformation to particle field digital holography,” J. Opt. Soc. Am. A 19, 1537–1546 (2002).
[CrossRef]

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392–1397 (2001).
[CrossRef]

C. Buraga, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three dimensional location of particles,” Opt. Lasers Eng. 33, 409–421(2000).
[CrossRef]

Pailhas, G.

G. Pailhas, P. Barricau, Y. Touvet, and L. Perret, “Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method,” Exp. Fluids 47, 195–207 (2009).
[CrossRef]

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: Reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
[CrossRef]

Pandey, N.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801–095814 (2009).
[CrossRef]

Paranthoën, P.

N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coetmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow,” Meas. Sci. Technol. 19, 074001 (2008).
[CrossRef]

Patte-Rouland, B.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

Perret, L.

G. Pailhas, P. Barricau, Y. Touvet, and L. Perret, “Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method,” Exp. Fluids 47, 195–207 (2009).
[CrossRef]

Picart, P.

Poggi, D.

D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).
[CrossRef]

Porporato, A.

D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).
[CrossRef]

Pu, S. L.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

Pu, Y.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Rémacha, C.

Rhodes, W. T.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801–095814 (2009).
[CrossRef]

Ridolfi, L.

D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).
[CrossRef]

Ruedi, J. D.

J. D. Ruedi, H. Nagib, J. Österlund, and P. A. Monkewitz, “Evaluation of three techniques for wall-shear measurements in three-dimensional flows,” Exp. Fluids 35, 389–396 (2003).
[CrossRef]

Salah, N.

N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coetmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow,” Meas. Sci. Technol. 19, 074001 (2008).
[CrossRef]

Satake, S.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647–1651 (2006).
[CrossRef]

Sato, K.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647–1651 (2006).
[CrossRef]

Saw, E. W.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[CrossRef]

Schockaert, C.

Schröder, A.

Y. Zhang, G. Shen, A. Schröder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).
[CrossRef]

Schröder, W.

S. Große and W. Schröder, “The micro-pillar shear-stress sensor MPS3 for turbulent flow,” Sensors 9, 2222–2251(2009).
[CrossRef]

Shaw, R. A.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[CrossRef]

W. Yang, A. B. Kostinski, and R. A. Shaw, “Phase signature form particle detection with digital in-line holography,” Opt. Lett. 31, 1399–1401 (2006).
[CrossRef]

Shen, G.

Y. Zhang, G. Shen, A. Schröder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).
[CrossRef]

Sheng, J.

J. Sheng, E. Malkiel, and A. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

Sheridan, J. T.

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Euro Opt. Soc. 6, 11034 (2011).
[CrossRef]

Soria, J.

C. Atkinson, S. Coudert, J.-M. Foucaut, M. Stanislas, and J. Soria, “The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer,” Exp. Fluids 50, 1031–1056 (2011).
[CrossRef]

Stanislas, M.

C. Atkinson, S. Coudert, J.-M. Foucaut, M. Stanislas, and J. Soria, “The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer,” Exp. Fluids 50, 1031–1056 (2011).
[CrossRef]

Taniguchi, J.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647–1651 (2006).
[CrossRef]

Thiébaut, E.

Touvet, Y.

G. Pailhas, P. Barricau, Y. Touvet, and L. Perret, “Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method,” Exp. Fluids 47, 195–207 (2009).
[CrossRef]

Trede, D.

Verrier, N.

Vikram, C. S.

C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik 78, 80–83 (1988).

Walle, F.

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Xu, W.

Yang, W.

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[CrossRef]

W. Yang, A. B. Kostinski, and R. A. Shaw, “Phase signature form particle detection with digital in-line holography,” Opt. Lett. 31, 1399–1401 (2006).
[CrossRef]

Yourassowsky, C.

Yuan, R.

Zhang, Y.

Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt. 48, 7000–7007 (2009).
[CrossRef]

Y. Zhang, G. Shen, A. Schröder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. (1)

M. Malek, D. Lebrun, and D. Allano, “Digital in-line holography system for 3D-3C particle tracking velocimetry,” Appl. Phys. 112, 151–166 (2008).

Exp. Fluids (7)

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44, 623–631 (2008).
[CrossRef]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

G. Pailhas, P. Barricau, Y. Touvet, and L. Perret, “Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method,” Exp. Fluids 47, 195–207 (2009).
[CrossRef]

J. D. Ruedi, H. Nagib, J. Österlund, and P. A. Monkewitz, “Evaluation of three techniques for wall-shear measurements in three-dimensional flows,” Exp. Fluids 35, 389–396 (2003).
[CrossRef]

J. Sheng, E. Malkiel, and A. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[CrossRef]

D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).
[CrossRef]

C. Atkinson, S. Coudert, J.-M. Foucaut, M. Stanislas, and J. Soria, “The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer,” Exp. Fluids 50, 1031–1056 (2011).
[CrossRef]

J. Euro Opt. Soc. (1)

D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Euro Opt. Soc. 6, 11034 (2011).
[CrossRef]

J. Opt. Soc. Am. A (2)

Meas. Sci. Technol. (4)

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647–1651 (2006).
[CrossRef]

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392–1397 (2001).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coetmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow,” Meas. Sci. Technol. 19, 074001 (2008).
[CrossRef]

New J. Phys. (1)

J. Lu, J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, “Lagrangian particle tracking in three dimensions via single-camera in-line digital holography,” New J. Phys. 10, 125013 (2008).
[CrossRef]

Opt. Eng. (2)

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801–095814 (2009).
[CrossRef]

Y. Zhang, G. Shen, A. Schröder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45, 075801 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

C. Buraga, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three dimensional location of particles,” Opt. Lasers Eng. 33, 409–421(2000).
[CrossRef]

Opt. Lett. (4)

Optik (1)

C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik 78, 80–83 (1988).

Sensors (1)

S. Große and W. Schröder, “The micro-pillar shear-stress sensor MPS3 for turbulent flow,” Sensors 9, 2222–2251(2009).
[CrossRef]

Other (1)

T. Kreis, Handbook of Holographic Interferometry, Optical and Digital Methods (Wiley-VCH, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Optical configuration of recording in-line holograms of droplets with a divergent beam. S, laser source; ( ξ , η ) , object plane; ( x , y ) , 2D detector plane.

Fig. 2.
Fig. 2.

3D schematic view of the recording set up. The laser source and the camera are outside of the wind tunnel. All the holograms are recorded through a transparent reticle where calibrated discs are deposited.

Fig. 3.
Fig. 3.

Window-reticle used for the calibration step during hologram recordings. The pattern is composed of five opaque disks of diameter 5 μm with shape of a cross.

Fig. 4.
Fig. 4.

Evolution of the SNR ratio of calibrated opaque disks in the diameter range [2–8 μm]. Magnification K 3 .

Fig. 5.
Fig. 5.

Evolution of the magnification factor K through the sample volume as a function of the distance from camera z e for a reference magnification G = 3.195 .

Fig. 6.
Fig. 6.

Reconstruction of the 5 μm calibrated disks of the window-reticle. (a) View of reconstructed image. (b) Measured axial location of each disk versus hologram number from a recorded sequence of 7.5 seconds. (c) Measured axial location of each disk versus hologram number from a recorded sequence of 500 s. (d) Variations of the measured x - y location of each disk (500 s).

Fig. 7.
Fig. 7.

Example of reconstruction of image pairs for different distance from the wall Y . Velocity in the tunnel: U = 3 m / s and time between two pulses T 12 = 180 μs . The SNR varies in the range 8.4 to 14 dB and the distance from the wall Y has been measured is in the range (0.19–1.08 mm).

Fig. 8.
Fig. 8.

Example of 3D velocity vector field measured from 200 holograms recorded in the wind tunnel. U = 5 m / s .

Fig. 9.
Fig. 9.

Velocity measurement along x axis versus the distance from the wall for three studied velocities: U = 3 , 5, and 10 m / s .

Tables (4)

Tables Icon

Table 1. Parameters of the Experimental Recording Setup

Tables Icon

Table 2. Number of Holograms Recorded for Each Condition and Extracted Particle Images

Tables Icon

Table 3. Conditions for Considering a Dark Spot as a Particle Image

Tables Icon

Table 4. Conditions for Considering a Detected Couple as an Image Pair

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

K = z s z s z e ,
I z e ( r ) = 1 2 λ z eq sin ( π r 2 λ z eq ) F d eq λ z eq ( r ) + ( λ z eq ) 2 F d eq λ z eq 2 ( r ) ,
I z eq ( x , y ) = 1 [ O * * ( h z eq + h z eq ¯ ) ] ( x , y ) ,
R ( x , y ) = [ I z eq * * ( h z r + h z r ¯ ) ] ( x , y ) .
R ( x , y ) = 2 { 1 O ( x , y ) 1 2 [ O ( x , y ) * * ( h 2 z r + h 2 z r ¯ ) ] ( x , y ) } .
z e > N p 2 K λ ,
K > N p 2 λ z s + 1 .
K ( z r ) = z s + z r z r .
K ( z r ) = ( G 1 ) z r z ref + 1 .
z eq = z s z e z s z e ,
z eq z e = K 2 .
Y = z r K z ref G .
{ u = x i + 1 x i K ( z i ) Δ T v = y i + 1 y i K ( z i ) Δ T w = z i + 1 z i K 2 ( z i ) Δ T
u ¯ = u τ 2 ν Y ,

Metrics