Abstract

We propose a fast, noniterative method to segment an in-line hologram of a volumetric sample into in-line subholograms according to its constituent objects. In contrast to the phase retrieval or twin image elimination algorithms, we do not aim or require to reconstruct the complex wave field of all the objects, which would be a more complex task, but only provide a good estimate about the contribution of the particular objects to the original hologram quickly. The introduced hologram segmentation algorithm exploits the special inner structure of the in-line holograms and applies only the estimated supports and reconstruction distances of the corresponding objects as parameters. The performance of the proposed method is demonstrated and analyzed experimentally both on synthetic and measured holograms. We discussed how the proposed algorithm can be efficiently applied for object reconstruction and phase retrieval tasks.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  2. J. Burns and N. Watson, “Data extraction from underwater holograms of marine organisms,” in OCEANS 2007—Europe (IEEE, 2007), pp. 1–6.
  3. P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
    [CrossRef]
  4. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
    [CrossRef]
  5. P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research 2, 1–11 (2010).
  6. M. DaneshPanah and B. Javidi, “Tracking biological microorganisms in sequence of 3D holographic microscopy images,” Opt. Express 15, 10761–10766 (2007).
    [CrossRef]
  7. Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” Proc. SPIE 7376, 737614 (2010).
    [CrossRef]
  8. Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” Proc. SPIE 7568, 75681P (2010).
    [CrossRef]
  9. F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
    [CrossRef]
  10. T. Colomb, F. Charrière, J. Kühn, P. Marquet, and C. Depeursinge, “Advantages of digital holographic microscopy for real-time full field absolute phase imaging,” Proc. SPIE 6861, 1–10 (2008).
    [CrossRef]
  11. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
    [CrossRef]
  12. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [CrossRef]
  13. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163–168 (2007).
    [CrossRef]
  14. O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
    [CrossRef]
  15. N. Shaked, Y. Zhu, M. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
    [CrossRef]
  16. J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef]
  17. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef]
  18. F. Pellistri, C. Pontiggia, L. Repetto, and E. Piano, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72, 964–967 (2004).
    [CrossRef]
  19. S. Jericho, J. Garcia-Sucerquia, W. Xu, M. Jericho, and H. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
    [CrossRef]
  20. C. Oh, S. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
    [CrossRef]
  21. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Twin-image reduction in inline digital holography using an object segmentation heuristic,” J. Phys. Conf. Ser. 139, 012014 (2008).
    [CrossRef]
  22. B. Hennelly, D. Kelly, N. Pandey, and D. Monaghan, “Review of twin reduction and twin removal techniques in holography,” in CIICT 2009: Proceedings of the China-Ireland Information and Communications Technologies Conference (National University of Ireland, 2009), pp. 241–245.
  23. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
    [CrossRef]
  24. A. Coskun, I. Sencan, T. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510 (2010).
    [CrossRef]
  25. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [CrossRef]
  26. G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423–433(1993).
    [CrossRef]
  27. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
  28. P. Hariharan, Optical Holography: Principles, Techniques, and Applications (Cambridge University, 1996).
  29. C. McElhinney, B. Hennelly, L. Ahrenberg, and T. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
    [CrossRef]
  30. W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [CrossRef]
  31. S. Isikman, W. Bishara, S. Mavandadi, F. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011).
    [CrossRef]
  32. I. Bergoënd, T. Colomb, N. Pavillon, Y. Emery, and C. Depeursinge, “Depth-of-field extension and 3D reconstruction in digital holographic microscopy,” Proc. SPIE 7390, 73901C (2009).
  33. J. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  34. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
    [CrossRef]
  35. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).
    [CrossRef]
  36. L. Orzó, Z. Göröcs, I. Szatmári, and S. Tőkés, “Gpu implementation of volume reconstruction and object detection in digital holographic microscopy,” in Proceedings of IEEE Conference on Cellular Nanoscale Networks and Their Applications (CNNA) (IEEE, 2010), pp. 1–4.

2011 (2)

S. Isikman, W. Bishara, S. Mavandadi, F. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011).
[CrossRef]

J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
[CrossRef]

2010 (6)

C. Oh, S. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
[CrossRef]

A. Coskun, I. Sencan, T. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510 (2010).
[CrossRef]

W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[CrossRef]

P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research 2, 1–11 (2010).

Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” Proc. SPIE 7376, 737614 (2010).
[CrossRef]

Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” Proc. SPIE 7568, 75681P (2010).
[CrossRef]

2009 (3)

2008 (6)

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).
[CrossRef]

C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Twin-image reduction in inline digital holography using an object segmentation heuristic,” J. Phys. Conf. Ser. 139, 012014 (2008).
[CrossRef]

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[CrossRef]

C. McElhinney, B. Hennelly, L. Ahrenberg, and T. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

T. Colomb, F. Charrière, J. Kühn, P. Marquet, and C. Depeursinge, “Advantages of digital holographic microscopy for real-time full field absolute phase imaging,” Proc. SPIE 6861, 1–10 (2008).
[CrossRef]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
[CrossRef]

2007 (2)

2006 (5)

J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

S. Jericho, J. Garcia-Sucerquia, W. Xu, M. Jericho, and H. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

2005 (2)

2004 (1)

F. Pellistri, C. Pontiggia, L. Repetto, and E. Piano, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72, 964–967 (2004).
[CrossRef]

2002 (1)

1993 (1)

1982 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Ahrenberg, L.

C. McElhinney, B. Hennelly, L. Ahrenberg, and T. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

Bergoënd, I.

I. Bergoënd, T. Colomb, N. Pavillon, Y. Emery, and C. Depeursinge, “Depth-of-field extension and 3D reconstruction in digital holographic microscopy,” Proc. SPIE 7390, 73901C (2009).

Bertaux, N.

Bishara, W.

S. Isikman, W. Bishara, S. Mavandadi, F. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011).
[CrossRef]

W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[CrossRef]

Brady, D.

Burns, J.

J. Burns and N. Watson, “Data extraction from underwater holograms of marine organisms,” in OCEANS 2007—Europe (IEEE, 2007), pp. 1–6.

Charrière, F.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
[CrossRef]

T. Colomb, F. Charrière, J. Kühn, P. Marquet, and C. Depeursinge, “Advantages of digital holographic microscopy for real-time full field absolute phase imaging,” Proc. SPIE 6861, 1–10 (2008).
[CrossRef]

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

Choi, K.

Colomb, T.

I. Bergoënd, T. Colomb, N. Pavillon, Y. Emery, and C. Depeursinge, “Depth-of-field extension and 3D reconstruction in digital holographic microscopy,” Proc. SPIE 7390, 73901C (2009).

T. Colomb, F. Charrière, J. Kühn, P. Marquet, and C. Depeursinge, “Advantages of digital holographic microscopy for real-time full field absolute phase imaging,” Proc. SPIE 6861, 1–10 (2008).
[CrossRef]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
[CrossRef]

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

Coskun, A.

Cuche, E.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
[CrossRef]

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

DaneshPanah, M.

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Decaestecker, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Denis, L.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[CrossRef]

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Depeursinge, C.

I. Bergoënd, T. Colomb, N. Pavillon, Y. Emery, and C. Depeursinge, “Depth-of-field extension and 3D reconstruction in digital holographic microscopy,” Proc. SPIE 7390, 73901C (2009).

T. Colomb, F. Charrière, J. Kühn, P. Marquet, and C. Depeursinge, “Advantages of digital holographic microscopy for real-time full field absolute phase imaging,” Proc. SPIE 6861, 1–10 (2008).
[CrossRef]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
[CrossRef]

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

Dubois, F.

F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Ducottet, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[CrossRef]

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Emery, Y.

I. Bergoënd, T. Colomb, N. Pavillon, Y. Emery, and C. Depeursinge, “Depth-of-field extension and 3D reconstruction in digital holographic microscopy,” Proc. SPIE 7390, 73901C (2009).

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
[CrossRef]

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

Feng, S.

S. Isikman, W. Bishara, S. Mavandadi, F. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011).
[CrossRef]

Fienup, J.

Fournel, T.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[CrossRef]

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Fournier, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[CrossRef]

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Frauel, Y.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Garcia-Sucerquia, J.

S. Jericho, J. Garcia-Sucerquia, W. Xu, M. Jericho, and H. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (Roberts, 2005).

Göröcs, Z.

Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” Proc. SPIE 7568, 75681P (2010).
[CrossRef]

Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” Proc. SPIE 7376, 737614 (2010).
[CrossRef]

L. Orzó, Z. Göröcs, I. Szatmári, and S. Tőkés, “Gpu implementation of volume reconstruction and object detection in digital holographic microscopy,” in Proceedings of IEEE Conference on Cellular Nanoscale Networks and Their Applications (CNNA) (IEEE, 2010), pp. 1–4.

Hahn, J.

Hariharan, P.

P. Hariharan, Optical Holography: Principles, Techniques, and Applications (Cambridge University, 1996).

Hennelly, B.

C. McElhinney, B. Hennelly, L. Ahrenberg, and T. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

B. Hennelly, D. Kelly, N. Pandey, and D. Monaghan, “Review of twin reduction and twin removal techniques in holography,” in CIICT 2009: Proceedings of the China-Ireland Information and Communications Technologies Conference (National University of Ireland, 2009), pp. 241–245.

Hennelly, B. M.

C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Twin-image reduction in inline digital holography using an object segmentation heuristic,” J. Phys. Conf. Ser. 139, 012014 (2008).
[CrossRef]

Horisaki, R.

Isikman, S.

S. Isikman, W. Bishara, S. Mavandadi, F. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011).
[CrossRef]

C. Oh, S. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
[CrossRef]

Ito, T.

Javidi, B.

Jericho, M.

S. Jericho, J. Garcia-Sucerquia, W. Xu, M. Jericho, and H. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Jericho, S.

J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

S. Jericho, J. Garcia-Sucerquia, W. Xu, M. Jericho, and H. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Joyeux, D.

Katz, J.

Kelly, D.

B. Hennelly, D. Kelly, N. Pandey, and D. Monaghan, “Review of twin reduction and twin removal techniques in holography,” in CIICT 2009: Proceedings of the China-Ireland Information and Communications Technologies Conference (National University of Ireland, 2009), pp. 241–245.

Kemper, B.

P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research 2, 1–11 (2010).

Khademhosseinieh, B.

Kiss, M.

Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” Proc. SPIE 7376, 737614 (2010).
[CrossRef]

Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” Proc. SPIE 7568, 75681P (2010).
[CrossRef]

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Klages, P.

Koren, G.

Kreuzer, H.

J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

S. Jericho, J. Garcia-Sucerquia, W. Xu, M. Jericho, and H. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Kühn, J.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
[CrossRef]

T. Colomb, F. Charrière, J. Kühn, P. Marquet, and C. Depeursinge, “Advantages of digital holographic microscopy for real-time full field absolute phase imaging,” Proc. SPIE 6861, 1–10 (2008).
[CrossRef]

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

Langehanenberg, P.

P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research 2, 1–11 (2010).

Lau, R.

S. Isikman, W. Bishara, S. Mavandadi, F. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011).
[CrossRef]

Legros, J.

F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Lim, S.

Magistretti, P.

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

Malkiel, E.

Marquet, P.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
[CrossRef]

T. Colomb, F. Charrière, J. Kühn, P. Marquet, and C. Depeursinge, “Advantages of digital holographic microscopy for real-time full field absolute phase imaging,” Proc. SPIE 6861, 1–10 (2008).
[CrossRef]

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

Matoba, O.

Matsushima, K.

Mavandadi, S.

S. Isikman, W. Bishara, S. Mavandadi, F. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011).
[CrossRef]

McElhinney, C.

C. McElhinney, B. Hennelly, L. Ahrenberg, and T. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

McElhinney, C. P.

C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Twin-image reduction in inline digital holography using an object segmentation heuristic,” J. Phys. Conf. Ser. 139, 012014 (2008).
[CrossRef]

Miura, J.

Monaghan, D.

B. Hennelly, D. Kelly, N. Pandey, and D. Monaghan, “Review of twin reduction and twin removal techniques in holography,” in CIICT 2009: Proceedings of the China-Ireland Information and Communications Technologies Conference (National University of Ireland, 2009), pp. 241–245.

Monnom, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Montfort, F.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
[CrossRef]

Naughton, T.

C. McElhinney, B. Hennelly, L. Ahrenberg, and T. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[CrossRef]

Naughton, T. J.

C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Twin-image reduction in inline digital holography using an object segmentation heuristic,” J. Phys. Conf. Ser. 139, 012014 (2008).
[CrossRef]

Oh, C.

Orzó, L.

Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” Proc. SPIE 7376, 737614 (2010).
[CrossRef]

Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” Proc. SPIE 7568, 75681P (2010).
[CrossRef]

L. Orzó, Z. Göröcs, I. Szatmári, and S. Tőkés, “Gpu implementation of volume reconstruction and object detection in digital holographic microscopy,” in Proceedings of IEEE Conference on Cellular Nanoscale Networks and Their Applications (CNNA) (IEEE, 2010), pp. 1–4.

Ozcan, A.

Pandey, N.

B. Hennelly, D. Kelly, N. Pandey, and D. Monaghan, “Review of twin reduction and twin removal techniques in holography,” in CIICT 2009: Proceedings of the China-Ireland Information and Communications Technologies Conference (National University of Ireland, 2009), pp. 241–245.

Pavillon, N.

I. Bergoënd, T. Colomb, N. Pavillon, Y. Emery, and C. Depeursinge, “Depth-of-field extension and 3D reconstruction in digital holographic microscopy,” Proc. SPIE 7390, 73901C (2009).

Pellistri, F.

F. Pellistri, C. Pontiggia, L. Repetto, and E. Piano, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72, 964–967 (2004).
[CrossRef]

Piano, E.

F. Pellistri, C. Pontiggia, L. Repetto, and E. Piano, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72, 964–967 (2004).
[CrossRef]

Polack, F.

Pontiggia, C.

F. Pellistri, C. Pontiggia, L. Repetto, and E. Piano, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72, 964–967 (2004).
[CrossRef]

Rappaz, B.

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

Repetto, L.

F. Pellistri, C. Pontiggia, L. Repetto, and E. Piano, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72, 964–967 (2004).
[CrossRef]

Rinehart, M.

Sato, Y.

Sencan, I.

Shaked, N.

Sheng, J.

Shimobaba, T.

Stern, A.

Su, T.

Szatmári, I.

L. Orzó, Z. Göröcs, I. Szatmári, and S. Tőkés, “Gpu implementation of volume reconstruction and object detection in digital holographic microscopy,” in Proceedings of IEEE Conference on Cellular Nanoscale Networks and Their Applications (CNNA) (IEEE, 2010), pp. 1–4.

Takenouchi, M.

Tokés, S.

Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” Proc. SPIE 7376, 737614 (2010).
[CrossRef]

Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” Proc. SPIE 7568, 75681P (2010).
[CrossRef]

L. Orzó, Z. Göröcs, I. Szatmári, and S. Tőkés, “Gpu implementation of volume reconstruction and object detection in digital holographic microscopy,” in Proceedings of IEEE Conference on Cellular Nanoscale Networks and Their Applications (CNNA) (IEEE, 2010), pp. 1–4.

Tóth, V.

Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” Proc. SPIE 7376, 737614 (2010).
[CrossRef]

Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” Proc. SPIE 7568, 75681P (2010).
[CrossRef]

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

von Bally, G.

P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research 2, 1–11 (2010).

Watson, N.

J. Burns and N. Watson, “Data extraction from underwater holograms of marine organisms,” in OCEANS 2007—Europe (IEEE, 2007), pp. 1–6.

Wax, A.

Xu, W.

S. Jericho, J. Garcia-Sucerquia, W. Xu, M. Jericho, and H. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Yourassowsky, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Yu, F.

S. Isikman, W. Bishara, S. Mavandadi, F. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011).
[CrossRef]

Zhu, Y.

3D Research (1)

P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research 2, 1–11 (2010).

Am. J. Phys. (1)

F. Pellistri, C. Pontiggia, L. Repetto, and E. Piano, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72, 964–967 (2004).
[CrossRef]

Appl. Opt. (4)

J. Biomed. Opt. (1)

F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. Conf. Ser. (1)

C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Twin-image reduction in inline digital holography using an object segmentation heuristic,” J. Phys. Conf. Ser. 139, 012014 (2008).
[CrossRef]

Meas. Sci. Technol. (2)

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 074004 (2008).
[CrossRef]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Opt. Express (8)

M. DaneshPanah and B. Javidi, “Tracking biological microorganisms in sequence of 3D holographic microscopy images,” Opt. Express 15, 10761–10766 (2007).
[CrossRef]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).
[CrossRef]

N. Shaked, Y. Zhu, M. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[CrossRef]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
[CrossRef]

C. Oh, S. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
[CrossRef]

A. Coskun, I. Sencan, T. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510 (2010).
[CrossRef]

W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[CrossRef]

J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
[CrossRef]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

S. Isikman, W. Bishara, S. Mavandadi, F. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. USA 108, 7296–7301 (2011).
[CrossRef]

Proc. SPIE (7)

I. Bergoënd, T. Colomb, N. Pavillon, Y. Emery, and C. Depeursinge, “Depth-of-field extension and 3D reconstruction in digital holographic microscopy,” Proc. SPIE 7390, 73901C (2009).

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

P. Marquet, B. Rappaz, T. Colomb, F. Charrière, J. Kühn, Y. Emery, E. Cuche, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy, a new optical imaging technique to investigate cellular dynamics,” Proc. SPIE 6191, 61910U (2006).
[CrossRef]

Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” Proc. SPIE 7376, 737614 (2010).
[CrossRef]

Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” Proc. SPIE 7568, 75681P (2010).
[CrossRef]

T. Colomb, F. Charrière, J. Kühn, P. Marquet, and C. Depeursinge, “Advantages of digital holographic microscopy for real-time full field absolute phase imaging,” Proc. SPIE 6861, 1–10 (2008).
[CrossRef]

C. McElhinney, B. Hennelly, L. Ahrenberg, and T. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Jericho, J. Garcia-Sucerquia, W. Xu, M. Jericho, and H. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Other (5)

J. Burns and N. Watson, “Data extraction from underwater holograms of marine organisms,” in OCEANS 2007—Europe (IEEE, 2007), pp. 1–6.

P. Hariharan, Optical Holography: Principles, Techniques, and Applications (Cambridge University, 1996).

B. Hennelly, D. Kelly, N. Pandey, and D. Monaghan, “Review of twin reduction and twin removal techniques in holography,” in CIICT 2009: Proceedings of the China-Ireland Information and Communications Technologies Conference (National University of Ireland, 2009), pp. 241–245.

J. Goodman, Introduction to Fourier Optics (Roberts, 2005).

L. Orzó, Z. Göröcs, I. Szatmári, and S. Tőkés, “Gpu implementation of volume reconstruction and object detection in digital holographic microscopy,” in Proceedings of IEEE Conference on Cellular Nanoscale Networks and Their Applications (CNNA) (IEEE, 2010), pp. 1–4.

Supplementary Material (1)

» Media 1: MOV (1413 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Optical setup of the in-line DHM (a) makes it possible to measure the hologram of volumetric samples. Although, diffractions of the sample objects frequently overlap in the recorded hologram (b), by the application of proper hologram segmentation we can retrieve the correct images of these objects with their 3D positions.

Fig. 2.
Fig. 2.

Algorithmic steps and operational principles of the introduced hologram segmentation are explained on a synthetic test hologram (a). Supported part (c) of the reconstruction (b) of the composite test hologram defines the first approximation of the segmented and the remaining hologram (d). However, there is a recognizable bias in this approximation, which is caused by the supported part of the twin image. This bias can be retrieved (g) and eliminated from the approximated remaining hologram reconstruction (e), using the property that the reconstruction of the segmented hologram approximation contains effectively no modulation outside the support (f). This way, the original hologram is correctly segmented into a subhologram (h) and the remaining hologram (i).

Fig. 3.
Fig. 3.

Measured in-line hologram (a) is segmented to a hologram according to one of the constituent objects and to the residual hologram. Although the segmented holograms have the same size and resolution as the original one, to help the observation a zoomed part (b) of the original hologram and the same zoomed parts of the segmented and the remaining holograms are shown [(c) and (d)]. It can be seen that all the object-related diffraction patterns are removed from the remaining hologram, while the interference fringes of the other objects are correctly preserved (scale bars denote 20 μm).

Fig. 4.
Fig. 4.

Segmentation algorithm can eliminate the holographic contribution of the different objects from the measured composite hologram one after the other (Media 1). This way, the diffractions of the segmented objects are removed from the hologram and do not disturb the reconstruction of the last object (Asterionella alga). (a) Measured composite hologram. The sample objects were freely floating algae in a large volume of water. (b) Reconstruction of a given object (a Nitzschia alga) in the approximated reconstruction distance. The crudely estimated support is highlighted. (c) Contribution of this reconstructed object to the original hologram (scale bars denote 20 μm).

Fig. 5.
Fig. 5.

Residual error of the segmentation appears to be small for small and large reconstruction distances, as well (a). The segmentation algorithm is robust against a small bias of the applied reconstruction distance (b), while the residual error decreases with the support size (c) as is expected.

Fig. 6.
Fig. 6.

We can recognize that the small residual error of the segmentation algorithm depends on the shape of the support of the object [(a) and (b)]. Using the average of several segmented holograms (applying four elliptic supports of different orientation), we can reduce this error considerably (c).

Fig. 7.
Fig. 7.

To demonstrate the applicability of the hologram segmentation in phase retrieval tasks we constructed a synthetic composite hologram (a) from two amplitude- and phase-modulated test objects. The reconstruction of one of the objects is considerably biased by the diffraction of the other object (b). Using the corrected hologram segmentation results we can eliminate the contribution of the second object from the hologram (c) and also from the reconstruction (d). Phase retrieval can not be applied directly in the case of combined in-line holograms. It can be seen that the modified Gerchberg–Saxton algorithm does not converge for the composite hologram. We can recognize even some worsening of the retrieved image quality (see insets). Conversely, the modified Gerchberg–Saxton algorithm (slowly) converges if we apply it on the segmented hologram.

Fig. 8.
Fig. 8.

To find the correct hologram of a particular object (Scenedesmus alga) without any systematic error (c) we can subtract all the segmented subholograms of the nearby objects from the original measured hologram (a). Diffractions of other objects can bias the reconstruction of the actual object [(b) and (d)], if we use the original (a) or the segmented hologram (c), respectively. Conversely, if we apply the corrected hologram segmentation results (e), these biases are also eliminated (f). Here only zoomed part of the holograms and reconstructions are shown, but the algorithm uses the original, high-resolution holograms (scale bars denote 20 μm).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

hd(E(x,y))=F1{F{E(x,y)}eikz(u,v)d},
kz(u,v)={2πλ1(λu)2(λv)2,if1(λu)2(λv)2>00,otherwise.
hd(1o)=ei2πdλhd(o)=ei2πdλ(1hd(O)),
H=|1hd(o)|2=1hd(O)(hd(O))*+|hd(O)|212(hd(O)),
H=|1j=1nhdj(oj)|2,
H1j=1nhdj(Oj)j=1n(hdj(Oj))*=12j=1n(hdj(Oj)).
H12(hd1(O1))+Hrem,
I=hd1(H)=ei2πdλO1h2d1(O1*)+hd1(Hrem).
I=ei2πdλO1[h2d1(O1*)]S,
[E(x,y)]S={E(x,y),if(x,y)S,0,otherwise.
hd1(I)=1hd1(O1)hd1(TS).
H=H(2(hd1(I))2)=1+Hrem+2(hd1(TS)).
I=ei2πdλ+TS+[h2d1(TS*)]S,
hd1(I)=1+hd1(TS)+hd1(TS*)+ε=1+2(hd1(TS))+ε,
H=(H(hd1(I)1))=1+Hrem(ε),
H1=HH=2(hd1(O1))+(ε).
(ε)=(hd1[h2d1(TS*)]S¯)=(hd1[h2d1[h2d1(O1)]S]S¯).
E=(x,y)(H(x,y)<H(x,y)>)2(x,y)(H(x,y)<H(x,y)>)2.

Metrics