Abstract

By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm2. The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).
  2. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  3. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag, 2005).
  4. J. Garcia-Sucerquia, W. Xu, P. Klages, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef]
  5. W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Recording and reconstruction of digital Gabor holograms,” Optik 121, 2179–2184 (2010).
    [CrossRef]
  6. M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, “Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy,” Appl. Opt. 51, 1503–1515 (2012).
    [CrossRef]
  7. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London A 197, 454–487 (1949).
    [CrossRef]
  8. M. H. Jericho and H. J. Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. P. Ferraro, A. Wax, and Z. Zalevsky, eds., Springer Series in Surface Sciences (Springer, 2011), pp. 3–30.
  9. J. Garcia-Sucerquia, D. C. Alvarez-Palacio, and H. J. Kreuzer, “High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres,” Appl. Opt. 47, 4723–4728 (2008).
    [CrossRef]
  10. S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
    [CrossRef]
  11. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
    [CrossRef]
  12. M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
    [CrossRef]
  13. J. F. Restrepo and J. Garcia-Sucerquia, “Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy,” Opt. Lett. 37, 752–754 (2012).
    [CrossRef]
  14. D. A. Hincapie, C. Restrepo, H. Casanova, J. Kreuzer, and J. Garcia-Sucerquia, “Colloidal stability evaluation via digital in-line holographic microscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD)(Optical Society of America, 2008), paper DTuC7.
  15. D. C. Alvarez-Palacio and J. Garcia-Sucerquia, “Lensless microscopy technique for static and dynamic colloidal systems,” J. Colloid Interface Sci. 349, 637–640 (2010).
    [CrossRef]
  16. J. Garcia-Sucerquia, “Color lensless digital holographic microscopy,” Opt. Lett. 37, 1724–1726 (2012).
    [CrossRef]
  17. J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, 1984).
  18. H. Meng, W. L. Anderson, F. Hussain, and D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993).
    [CrossRef]
  19. P. Petruck, R. Riesenberg, and R. Kowarschik, “Partially coherent light-emitting diode illumination for video-rate in-line holographic microscopy,” Appl. Opt. 51, 2333–2340 (2012).
    [CrossRef]
  20. P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012).
    [CrossRef]
  21. A. Siegman, Lasers, 1st ed. (University Science, 1986).
  22. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004).
    [CrossRef]
  23. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006).
    [CrossRef]
  24. B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
    [CrossRef]
  25. W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [CrossRef]
  26. J. Garcia-Sucerquia, “Partially coherent lensless holographic microscopy with micrometre resolution applied to extended objects,” 3D Res.2, 02002-5 (2011).
    [CrossRef]
  27. G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip 11, 2738–2743 (2011).
    [CrossRef]
  28. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).
  29. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25, 2459–2466 (2008).
    [CrossRef]

2012 (5)

2011 (1)

G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip 11, 2738–2743 (2011).
[CrossRef]

2010 (4)

W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[CrossRef]

D. C. Alvarez-Palacio and J. Garcia-Sucerquia, “Lensless microscopy technique for static and dynamic colloidal systems,” J. Colloid Interface Sci. 349, 637–640 (2010).
[CrossRef]

W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Recording and reconstruction of digital Gabor holograms,” Optik 121, 2179–2184 (2010).
[CrossRef]

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

2008 (3)

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

J. Garcia-Sucerquia, D. C. Alvarez-Palacio, and H. J. Kreuzer, “High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres,” Appl. Opt. 47, 4723–4728 (2008).
[CrossRef]

U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25, 2459–2466 (2008).
[CrossRef]

2007 (1)

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

2006 (3)

2004 (1)

1993 (1)

1949 (1)

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London A 197, 454–487 (1949).
[CrossRef]

Alvarez-Palacio, D. C.

D. C. Alvarez-Palacio and J. Garcia-Sucerquia, “Lensless microscopy technique for static and dynamic colloidal systems,” J. Colloid Interface Sci. 349, 637–640 (2010).
[CrossRef]

J. Garcia-Sucerquia, D. C. Alvarez-Palacio, and H. J. Kreuzer, “High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres,” Appl. Opt. 47, 4723–4728 (2008).
[CrossRef]

Anderson, W. L.

Asundi, A.

W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Recording and reconstruction of digital Gabor holograms,” Optik 121, 2179–2184 (2010).
[CrossRef]

Biener, G.

G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip 11, 2738–2743 (2011).
[CrossRef]

Bishara, W.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).

Callens, N.

Callow, J. A.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

Callow, M. E.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

Casanova, H.

D. A. Hincapie, C. Restrepo, H. Casanova, J. Kreuzer, and J. Garcia-Sucerquia, “Colloidal stability evaluation via digital in-line holographic microscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD)(Optical Society of America, 2008), paper DTuC7.

Chee, O. C.

W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Recording and reconstruction of digital Gabor holograms,” Optik 121, 2179–2184 (2010).
[CrossRef]

Coskun, A.

Dubois, F.

Dumas, E. M.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

Gabor, D.

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London A 197, 454–487 (1949).
[CrossRef]

Garcia-Sucerquia, J.

J. F. Restrepo and J. Garcia-Sucerquia, “Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy,” Opt. Lett. 37, 752–754 (2012).
[CrossRef]

J. Garcia-Sucerquia, “Color lensless digital holographic microscopy,” Opt. Lett. 37, 1724–1726 (2012).
[CrossRef]

D. C. Alvarez-Palacio and J. Garcia-Sucerquia, “Lensless microscopy technique for static and dynamic colloidal systems,” J. Colloid Interface Sci. 349, 637–640 (2010).
[CrossRef]

J. Garcia-Sucerquia, D. C. Alvarez-Palacio, and H. J. Kreuzer, “High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres,” Appl. Opt. 47, 4723–4728 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, P. Klages, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

D. A. Hincapie, C. Restrepo, H. Casanova, J. Kreuzer, and J. Garcia-Sucerquia, “Colloidal stability evaluation via digital in-line holographic microscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD)(Optical Society of America, 2008), paper DTuC7.

J. Garcia-Sucerquia, “Partially coherent lensless holographic microscopy with micrometre resolution applied to extended objects,” 3D Res.2, 02002-5 (2011).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Gopinathan, U.

Greenbaum, A.

G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip 11, 2738–2743 (2011).
[CrossRef]

Grunze, M.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

Heydt, M.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

Hincapie, D. A.

D. A. Hincapie, C. Restrepo, H. Casanova, J. Kreuzer, and J. Garcia-Sucerquia, “Colloidal stability evaluation via digital in-line holographic microscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD)(Optical Society of America, 2008), paper DTuC7.

Hoyos, M.

Hussain, F.

Isikman, S. O.

G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip 11, 2738–2743 (2011).
[CrossRef]

Jericho, M. H.

M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, “Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy,” Appl. Opt. 51, 1503–1515 (2012).
[CrossRef]

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, P. Klages, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

M. H. Jericho and H. J. Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. P. Ferraro, A. Wax, and Z. Zalevsky, eds., Springer Series in Surface Sciences (Springer, 2011), pp. 3–30.

Jericho, S. K.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Jericho, S. M.

Kanka, M.

Kemper, B.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Kim, M.

M. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).

Klages, P.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, P. Klages, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Kowarschik, R.

P. Petruck, R. Riesenberg, and R. Kowarschik, “Partially coherent light-emitting diode illumination for video-rate in-line holographic microscopy,” Appl. Opt. 51, 2333–2340 (2012).
[CrossRef]

P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012).
[CrossRef]

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag, 2005).

Kreuzer, H. J.

M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, “Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy,” Appl. Opt. 51, 1503–1515 (2012).
[CrossRef]

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

J. Garcia-Sucerquia, D. C. Alvarez-Palacio, and H. J. Kreuzer, “High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres,” Appl. Opt. 47, 4723–4728 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, P. Klages, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

M. H. Jericho and H. J. Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. P. Ferraro, A. Wax, and Z. Zalevsky, eds., Springer Series in Surface Sciences (Springer, 2011), pp. 3–30.

Kreuzer, J.

D. A. Hincapie, C. Restrepo, H. Casanova, J. Kreuzer, and J. Garcia-Sucerquia, “Colloidal stability evaluation via digital in-line holographic microscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD)(Optical Society of America, 2008), paper DTuC7.

Kurowski, P.

Langehanenberg, P.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Lee, K.

G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip 11, 2738–2743 (2011).
[CrossRef]

Liu, D. D.

Meng, H.

Monnom, O.

Nadeau, J.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

Osten, W.

Ozcan, A.

G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip 11, 2738–2743 (2011).
[CrossRef]

W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[CrossRef]

Pedrini, G.

Petruck, P.

P. Petruck, R. Riesenberg, and R. Kowarschik, “Partially coherent light-emitting diode illumination for video-rate in-line holographic microscopy,” Appl. Opt. 51, 2333–2340 (2012).
[CrossRef]

P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012).
[CrossRef]

Pettitt, M.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

Piano, E.

Pontiggia, C.

Qu, W.

W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Recording and reconstruction of digital Gabor holograms,” Optik 121, 2179–2184 (2010).
[CrossRef]

Remmersmann, C.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Repetto, L.

Restrepo, C.

D. A. Hincapie, C. Restrepo, H. Casanova, J. Kreuzer, and J. Garcia-Sucerquia, “Colloidal stability evaluation via digital in-line holographic microscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD)(Optical Society of America, 2008), paper DTuC7.

Restrepo, J. F.

Riesenberg, R.

Rosenhahn, A.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

Siegman, A.

A. Siegman, Lasers, 1st ed. (University Science, 1986).

Stürwald, S.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Su, T.

Tseng, D.

G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip 11, 2738–2743 (2011).
[CrossRef]

von Bally, G.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).

Xu, W.

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, P. Klages, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Yourassowsky, C.

Yu, Y.

W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Recording and reconstruction of digital Gabor holograms,” Optik 121, 2179–2184 (2010).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012).
[CrossRef]

J. Adhes. (1)

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

J. Colloid Interface Sci. (1)

D. C. Alvarez-Palacio and J. Garcia-Sucerquia, “Lensless microscopy technique for static and dynamic colloidal systems,” J. Colloid Interface Sci. 349, 637–640 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

Lab Chip (1)

G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip 11, 2738–2743 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Opt. Lett. (3)

Optik (1)

W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Recording and reconstruction of digital Gabor holograms,” Optik 121, 2179–2184 (2010).
[CrossRef]

Planet. Space Sci. (1)

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

Proc. R. Soc. London A (1)

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London A 197, 454–487 (1949).
[CrossRef]

Rev. Sci. Instrum. (1)

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Other (9)

D. A. Hincapie, C. Restrepo, H. Casanova, J. Kreuzer, and J. Garcia-Sucerquia, “Colloidal stability evaluation via digital in-line holographic microscopy,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD)(Optical Society of America, 2008), paper DTuC7.

M. H. Jericho and H. J. Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. P. Ferraro, A. Wax, and Z. Zalevsky, eds., Springer Series in Surface Sciences (Springer, 2011), pp. 3–30.

M. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag, 2005).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).

J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, 1984).

A. Siegman, Lasers, 1st ed. (University Science, 1986).

J. Garcia-Sucerquia, “Partially coherent lensless holographic microscopy with micrometre resolution applied to extended objects,” 3D Res.2, 02002-5 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

DLHM experimental setup for the recording stage. For comparison purposes of the noise reduction, the setup has been built with LEDs (λ=530±30nm and λ=448±20nm) and lasers (λ=532nm and λ=405nm); in the illustration only the green sources have been drawn. The shutters select the light source to be utilized.

Fig. 2.
Fig. 2.

Multiple unwanted reflections-transmissions in DLHM. The multiple reflections-transmissions that take place inside the slide glass, and between the slide glass and the metallic surface of the pinhole are shown. Similar reflections-transmissions can occur in between the protection glass and the active surface of the digital screen.

Fig. 3.
Fig. 3.

Noise and its correction in DLHM. (a) Composite image of the reconstructed modified in-line holograms recorded with laser light: λ=532nm left-hand side and λ=405nm right-hand side. Parasitic interference fringes and the speckle noises that arise in LASER-DLHM are arrowed. (b) The correction of these noises in DLHM is shown. This is a composite image with the halves of the reconstructed holograms recorded with LED-DLHM; left-hand side λ=530±30nm and right-hand side λ=448±20nm. For both experiments the microscope subtended a numerical aperture of 0.32, L=18.5mm, WDs=12.3mm; the sample is placed at z=2.1mm.

Fig. 4.
Fig. 4.

Performance of DLHM as the parameter η is varied. The value of η (Dcoh) for each figure is written on it. The different values η for Figs.4(a)4(e) are obtained for dp=30μm, 20, 10, 5, and 2 μm, respectively; λ¯=530nm. Figure 4(f) is a reconstruction for LASER-DLHM (λ=532nm, η1). The red squares are zoomed in areas for enhanced visualization. All the images were recorded at a numerical aperture of 0.32, L=18.5mm, WDs=12.3mm. The sample is placed at z=2.1mm.

Fig. 5.
Fig. 5.

Evidence of the variation of the impulse response function in DLHM as the parameter η changes. (a), (b) Show a reconstructed section of the head of a drosophila melanogaster fly obtained with LASER-DLHM (λ=405nm, η1, Dcoh1.2mm)—LED-DLHM (λ=448±20nm, η=0.28, Dcoh=400μm). The insets show enlarged images of two antennas located among the ommatidia of the fruit fly. (c) Shows profiles along the white lines on the antennas in the insets for different values of the parameter η. The reconstructed images for η=0.09 (Dcoh=134μm) and η=0.14 (Dcoh=200μm) are not shown. All the images were produced with DLHM operating at a numerical aperture of 0.46, L=12mm, WDs=12.3mm. The sample is placed at z=1.4mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I˜(r)=|Uscat(r)|2+[Uscat(r)Uref*(r)+Uscat*(r)Uref(r)].
Uscat(r)=ScreenI˜(r)exp[i2πλ(rr|r|)]dr.
Δlλ02Δλ0.
Dcoh0.32λ¯Zdp,
η0.32λ¯LWDsdp.

Metrics