Abstract

Computer-generated holograms (CGHs) using multiview images (MVIs) are holograms generated with multiple ordinary cameras. This process typically requires a huge number of cameras arranged at high density. In this paper, we propose a method to improve CGH using MVIs that obtains the MVIs by using voxel models rather than cameras. In the proposed method the voxel model is generated using the shape-from-silhouette (SFS) technique. We perform SFS using a small number of cameras arranged sparsely to create voxel models of objects and then generate the required number of images from these models by volume rendering. This enables us to generate CGHs using MVIs with just a small number of sparsely arranged cameras. Moreover, the proposed method arrange CGHs using MVIs at arbitrary positions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three dimensional realistic objects recorded without wave interference,” Appl. Opt. 40, 2864–2870 (2001).
    [CrossRef]
  2. Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Mater. Express 12, 6246–6251 (2004).
    [CrossRef]
  3. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45, 4026–4036 (2006).
    [CrossRef]
  4. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
    [CrossRef]
  5. K. Kushimoto and Y. Sakamoto, “Computer-generated hologram calculated from multi-view images of real existing objects,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DWB6.
  6. Y. Sakamoto, N. Hayashi, A. Kato, and M. Kinoshita, “3D holo TV system based on multi-view images,” IEEE/ACIS 9th International Conference on Computer and Information Science (IEEE, 2010), pp. 831–835.
  7. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15, 2722–2729 (1976).
    [CrossRef]
  8. M. Kinoshita and Y. Sakamoto, “Computer-generated holograms at an arbitrary viewpoint synthesized from multi-view images,” Proc. SPIE 7233, 72330Z (2009).
    [CrossRef]
  9. N. Hayashi, Y. Sakamoto, and Y. Honda, “Improvement of camera arrangement in computer-generated holograms synthesized from multi-view images,” Proc. SPIE 7957, 795711 (2011).
    [CrossRef]
  10. B. Katz, N. T. Shaked, and J. Rosen, “Synthesizing computer generated holograms with reduced number of perspective projections,” Opt. Express 15, 13250–13255 (2007).
    [CrossRef]
  11. Y. Rivenson, A. Stern, and J. Rosen, “Compressive multiple view projection incoherent holography,” Opt. Express 19, 6109–6118 (2011).
    [CrossRef]
  12. H. Baker, “Three-dimensional modelling,” Proc. IJCAI 2, 649–655 (1977).
  13. A. Laurentini, “The visual hull concept for silhouette based image understanding,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 150–162 (1994).
    [CrossRef]
  14. O. Masatoshi and K. Takeo, “A multiple-baseline stereo,” IEICE Trans. 75, 1317–1327 (1992).
  15. T. Hideyuki, I. Toshio, and K. Yukio, “Planes recognition method for polyhedrons from actual shading images using photometric stereo,” IEICE Trans. 83, 1895–1904 (2000).
  16. W. Matusik, C. Buehler, R. Raskar, S. Gorlter, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH Proceedings (Association for Computer Machinery, 2000), pp. 369–374.
    [CrossRef]
  17. C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and R. Scopigno, “Marching intersections: an efficient resampling algorithm for surface management,” in International Conference on Shape Modeling and Applications (IEEE, 2001), pp. 296–305.
  18. S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by voxel coloring,” Int. J. Comput. Vis. 35, 151–173(1999).
    [CrossRef]
  19. K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” Int. J. Comput. Vis. 38, 199–218 (2000).
    [CrossRef]
  20. M. Tarini, M. Callieri, C. Montani, and C. Rocchini, “Marching intersection: an efficient approach to shape-from-silhouette,” in Proceedings of the Vision, Modeling, and Visualization Conference 2002 (AKA GmbH, 2002), pp. 283–290.
  21. M. Toyoura, M. Iiyama, K. Kakusho, and M. Minoh, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEICE Trans. 88, 1549–1563(2005).
  22. Z. Y. Zhang, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334 (2000).
    [CrossRef]
  23. Y. Sakamoto and Y. Aoki, “Autostereoscopic visualization of volume data using by computer-generated hologram,” IEICE Trans. 86, 302–309 (2003).
  24. T. S. Chen, C. C. Chang, and M. S. Hwang, “A virtual image cryptosystem based upon vector quantization,” IEEE Trans. Image Process. 7, 1485–1488 (1998).
    [CrossRef]

2011

N. Hayashi, Y. Sakamoto, and Y. Honda, “Improvement of camera arrangement in computer-generated holograms synthesized from multi-view images,” Proc. SPIE 7957, 795711 (2011).
[CrossRef]

Y. Rivenson, A. Stern, and J. Rosen, “Compressive multiple view projection incoherent holography,” Opt. Express 19, 6109–6118 (2011).
[CrossRef]

2009

M. Kinoshita and Y. Sakamoto, “Computer-generated holograms at an arbitrary viewpoint synthesized from multi-view images,” Proc. SPIE 7233, 72330Z (2009).
[CrossRef]

2007

2006

2005

M. Toyoura, M. Iiyama, K. Kakusho, and M. Minoh, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEICE Trans. 88, 1549–1563(2005).

2004

Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Mater. Express 12, 6246–6251 (2004).
[CrossRef]

2003

Y. Sakamoto and Y. Aoki, “Autostereoscopic visualization of volume data using by computer-generated hologram,” IEICE Trans. 86, 302–309 (2003).

2001

2000

Z. Y. Zhang, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334 (2000).
[CrossRef]

K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” Int. J. Comput. Vis. 38, 199–218 (2000).
[CrossRef]

T. Hideyuki, I. Toshio, and K. Yukio, “Planes recognition method for polyhedrons from actual shading images using photometric stereo,” IEICE Trans. 83, 1895–1904 (2000).

1999

S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by voxel coloring,” Int. J. Comput. Vis. 35, 151–173(1999).
[CrossRef]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

1998

T. S. Chen, C. C. Chang, and M. S. Hwang, “A virtual image cryptosystem based upon vector quantization,” IEEE Trans. Image Process. 7, 1485–1488 (1998).
[CrossRef]

1994

A. Laurentini, “The visual hull concept for silhouette based image understanding,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 150–162 (1994).
[CrossRef]

1992

O. Masatoshi and K. Takeo, “A multiple-baseline stereo,” IEICE Trans. 75, 1317–1327 (1992).

1977

H. Baker, “Three-dimensional modelling,” Proc. IJCAI 2, 649–655 (1977).

1976

Abookasis, D.

Aoki, Y.

Y. Sakamoto and Y. Aoki, “Autostereoscopic visualization of volume data using by computer-generated hologram,” IEICE Trans. 86, 302–309 (2003).

Arai, J.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

Baker, H.

H. Baker, “Three-dimensional modelling,” Proc. IJCAI 2, 649–655 (1977).

Buehler, C.

W. Matusik, C. Buehler, R. Raskar, S. Gorlter, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH Proceedings (Association for Computer Machinery, 2000), pp. 369–374.
[CrossRef]

Callieri, M.

M. Tarini, M. Callieri, C. Montani, and C. Rocchini, “Marching intersection: an efficient approach to shape-from-silhouette,” in Proceedings of the Vision, Modeling, and Visualization Conference 2002 (AKA GmbH, 2002), pp. 283–290.

Chang, C. C.

T. S. Chen, C. C. Chang, and M. S. Hwang, “A virtual image cryptosystem based upon vector quantization,” IEEE Trans. Image Process. 7, 1485–1488 (1998).
[CrossRef]

Chen, T. S.

T. S. Chen, C. C. Chang, and M. S. Hwang, “A virtual image cryptosystem based upon vector quantization,” IEEE Trans. Image Process. 7, 1485–1488 (1998).
[CrossRef]

Cignoni, P.

C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and R. Scopigno, “Marching intersections: an efficient resampling algorithm for surface management,” in International Conference on Shape Modeling and Applications (IEEE, 2001), pp. 296–305.

Dyer, C. R.

S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by voxel coloring,” Int. J. Comput. Vis. 35, 151–173(1999).
[CrossRef]

Ganovelli, F.

C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and R. Scopigno, “Marching intersections: an efficient resampling algorithm for surface management,” in International Conference on Shape Modeling and Applications (IEEE, 2001), pp. 296–305.

Gorlter, S.

W. Matusik, C. Buehler, R. Raskar, S. Gorlter, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH Proceedings (Association for Computer Machinery, 2000), pp. 369–374.
[CrossRef]

Hayashi, N.

N. Hayashi, Y. Sakamoto, and Y. Honda, “Improvement of camera arrangement in computer-generated holograms synthesized from multi-view images,” Proc. SPIE 7957, 795711 (2011).
[CrossRef]

Y. Sakamoto, N. Hayashi, A. Kato, and M. Kinoshita, “3D holo TV system based on multi-view images,” IEEE/ACIS 9th International Conference on Computer and Information Science (IEEE, 2010), pp. 831–835.

Hideyuki, T.

T. Hideyuki, I. Toshio, and K. Yukio, “Planes recognition method for polyhedrons from actual shading images using photometric stereo,” IEICE Trans. 83, 1895–1904 (2000).

Honda, Y.

N. Hayashi, Y. Sakamoto, and Y. Honda, “Improvement of camera arrangement in computer-generated holograms synthesized from multi-view images,” Proc. SPIE 7957, 795711 (2011).
[CrossRef]

Hoshino, H.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

Hwang, M. S.

T. S. Chen, C. C. Chang, and M. S. Hwang, “A virtual image cryptosystem based upon vector quantization,” IEEE Trans. Image Process. 7, 1485–1488 (1998).
[CrossRef]

Iiyama, M.

M. Toyoura, M. Iiyama, K. Kakusho, and M. Minoh, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEICE Trans. 88, 1549–1563(2005).

Itoh, M.

Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Mater. Express 12, 6246–6251 (2004).
[CrossRef]

Kakusho, K.

M. Toyoura, M. Iiyama, K. Kakusho, and M. Minoh, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEICE Trans. 88, 1549–1563(2005).

Kato, A.

Y. Sakamoto, N. Hayashi, A. Kato, and M. Kinoshita, “3D holo TV system based on multi-view images,” IEEE/ACIS 9th International Conference on Computer and Information Science (IEEE, 2010), pp. 831–835.

Katz, B.

Kinoshita, M.

M. Kinoshita and Y. Sakamoto, “Computer-generated holograms at an arbitrary viewpoint synthesized from multi-view images,” Proc. SPIE 7233, 72330Z (2009).
[CrossRef]

Y. Sakamoto, N. Hayashi, A. Kato, and M. Kinoshita, “3D holo TV system based on multi-view images,” IEEE/ACIS 9th International Conference on Computer and Information Science (IEEE, 2010), pp. 831–835.

Kushimoto, K.

K. Kushimoto and Y. Sakamoto, “Computer-generated hologram calculated from multi-view images of real existing objects,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DWB6.

Kutulakos, K. N.

K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” Int. J. Comput. Vis. 38, 199–218 (2000).
[CrossRef]

Laurentini, A.

A. Laurentini, “The visual hull concept for silhouette based image understanding,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 150–162 (1994).
[CrossRef]

Li, Y.

Masatoshi, O.

O. Masatoshi and K. Takeo, “A multiple-baseline stereo,” IEICE Trans. 75, 1317–1327 (1992).

Matusik, W.

W. Matusik, C. Buehler, R. Raskar, S. Gorlter, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH Proceedings (Association for Computer Machinery, 2000), pp. 369–374.
[CrossRef]

McMillan, L.

W. Matusik, C. Buehler, R. Raskar, S. Gorlter, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH Proceedings (Association for Computer Machinery, 2000), pp. 369–374.
[CrossRef]

Minoh, M.

M. Toyoura, M. Iiyama, K. Kakusho, and M. Minoh, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEICE Trans. 88, 1549–1563(2005).

Mishina, T.

Montani, C.

C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and R. Scopigno, “Marching intersections: an efficient resampling algorithm for surface management,” in International Conference on Shape Modeling and Applications (IEEE, 2001), pp. 296–305.

M. Tarini, M. Callieri, C. Montani, and C. Rocchini, “Marching intersection: an efficient approach to shape-from-silhouette,” in Proceedings of the Vision, Modeling, and Visualization Conference 2002 (AKA GmbH, 2002), pp. 283–290.

Okano, F.

T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45, 4026–4036 (2006).
[CrossRef]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

Okui, M.

Pingi, P.

C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and R. Scopigno, “Marching intersections: an efficient resampling algorithm for surface management,” in International Conference on Shape Modeling and Applications (IEEE, 2001), pp. 296–305.

Raskar, R.

W. Matusik, C. Buehler, R. Raskar, S. Gorlter, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH Proceedings (Association for Computer Machinery, 2000), pp. 369–374.
[CrossRef]

Rivenson, Y.

Rocchini, C.

M. Tarini, M. Callieri, C. Montani, and C. Rocchini, “Marching intersection: an efficient approach to shape-from-silhouette,” in Proceedings of the Vision, Modeling, and Visualization Conference 2002 (AKA GmbH, 2002), pp. 283–290.

C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and R. Scopigno, “Marching intersections: an efficient resampling algorithm for surface management,” in International Conference on Shape Modeling and Applications (IEEE, 2001), pp. 296–305.

Rosen, J.

Sakamoto, Y.

N. Hayashi, Y. Sakamoto, and Y. Honda, “Improvement of camera arrangement in computer-generated holograms synthesized from multi-view images,” Proc. SPIE 7957, 795711 (2011).
[CrossRef]

M. Kinoshita and Y. Sakamoto, “Computer-generated holograms at an arbitrary viewpoint synthesized from multi-view images,” Proc. SPIE 7233, 72330Z (2009).
[CrossRef]

Y. Sakamoto and Y. Aoki, “Autostereoscopic visualization of volume data using by computer-generated hologram,” IEICE Trans. 86, 302–309 (2003).

Y. Sakamoto, N. Hayashi, A. Kato, and M. Kinoshita, “3D holo TV system based on multi-view images,” IEEE/ACIS 9th International Conference on Computer and Information Science (IEEE, 2010), pp. 831–835.

K. Kushimoto and Y. Sakamoto, “Computer-generated hologram calculated from multi-view images of real existing objects,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DWB6.

Sando, Y.

Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Mater. Express 12, 6246–6251 (2004).
[CrossRef]

Scopigno, R.

C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and R. Scopigno, “Marching intersections: an efficient resampling algorithm for surface management,” in International Conference on Shape Modeling and Applications (IEEE, 2001), pp. 296–305.

Seitz, S. M.

K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” Int. J. Comput. Vis. 38, 199–218 (2000).
[CrossRef]

S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by voxel coloring,” Int. J. Comput. Vis. 35, 151–173(1999).
[CrossRef]

Shaked, N. T.

Stern, A.

Takeo, K.

O. Masatoshi and K. Takeo, “A multiple-baseline stereo,” IEICE Trans. 75, 1317–1327 (1992).

Tarini, M.

M. Tarini, M. Callieri, C. Montani, and C. Rocchini, “Marching intersection: an efficient approach to shape-from-silhouette,” in Proceedings of the Vision, Modeling, and Visualization Conference 2002 (AKA GmbH, 2002), pp. 283–290.

Toshio, I.

T. Hideyuki, I. Toshio, and K. Yukio, “Planes recognition method for polyhedrons from actual shading images using photometric stereo,” IEICE Trans. 83, 1895–1904 (2000).

Toyoura, M.

M. Toyoura, M. Iiyama, K. Kakusho, and M. Minoh, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEICE Trans. 88, 1549–1563(2005).

Yatagai, T.

Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Mater. Express 12, 6246–6251 (2004).
[CrossRef]

T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15, 2722–2729 (1976).
[CrossRef]

Yukio, K.

T. Hideyuki, I. Toshio, and K. Yukio, “Planes recognition method for polyhedrons from actual shading images using photometric stereo,” IEICE Trans. 83, 1895–1904 (2000).

Yuyama, I.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334 (2000).
[CrossRef]

Appl. Opt.

IEEE Trans. Image Process.

T. S. Chen, C. C. Chang, and M. S. Hwang, “A virtual image cryptosystem based upon vector quantization,” IEEE Trans. Image Process. 7, 1485–1488 (1998).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

A. Laurentini, “The visual hull concept for silhouette based image understanding,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 150–162 (1994).
[CrossRef]

IEEE Trans. Pattern Anal. Machine Intell.

Z. Y. Zhang, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334 (2000).
[CrossRef]

IEICE Trans.

Y. Sakamoto and Y. Aoki, “Autostereoscopic visualization of volume data using by computer-generated hologram,” IEICE Trans. 86, 302–309 (2003).

M. Toyoura, M. Iiyama, K. Kakusho, and M. Minoh, “An accurate shape reconstruction method by integrating visual hulls in time sequences,” IEICE Trans. 88, 1549–1563(2005).

O. Masatoshi and K. Takeo, “A multiple-baseline stereo,” IEICE Trans. 75, 1317–1327 (1992).

T. Hideyuki, I. Toshio, and K. Yukio, “Planes recognition method for polyhedrons from actual shading images using photometric stereo,” IEICE Trans. 83, 1895–1904 (2000).

Int. J. Comput. Vis.

S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by voxel coloring,” Int. J. Comput. Vis. 35, 151–173(1999).
[CrossRef]

K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” Int. J. Comput. Vis. 38, 199–218 (2000).
[CrossRef]

Opt. Eng.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

Opt. Express

Opt. Mater. Express

Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Mater. Express 12, 6246–6251 (2004).
[CrossRef]

Proc. IJCAI

H. Baker, “Three-dimensional modelling,” Proc. IJCAI 2, 649–655 (1977).

Proc. SPIE

M. Kinoshita and Y. Sakamoto, “Computer-generated holograms at an arbitrary viewpoint synthesized from multi-view images,” Proc. SPIE 7233, 72330Z (2009).
[CrossRef]

N. Hayashi, Y. Sakamoto, and Y. Honda, “Improvement of camera arrangement in computer-generated holograms synthesized from multi-view images,” Proc. SPIE 7957, 795711 (2011).
[CrossRef]

Other

K. Kushimoto and Y. Sakamoto, “Computer-generated hologram calculated from multi-view images of real existing objects,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DWB6.

Y. Sakamoto, N. Hayashi, A. Kato, and M. Kinoshita, “3D holo TV system based on multi-view images,” IEEE/ACIS 9th International Conference on Computer and Information Science (IEEE, 2010), pp. 831–835.

W. Matusik, C. Buehler, R. Raskar, S. Gorlter, and L. McMillan, “Image-based visual hulls,” in Computer Graphics, SIGGRAPH Proceedings (Association for Computer Machinery, 2000), pp. 369–374.
[CrossRef]

C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and R. Scopigno, “Marching intersections: an efficient resampling algorithm for surface management,” in International Conference on Shape Modeling and Applications (IEEE, 2001), pp. 296–305.

M. Tarini, M. Callieri, C. Montani, and C. Rocchini, “Marching intersection: an efficient approach to shape-from-silhouette,” in Proceedings of the Vision, Modeling, and Visualization Conference 2002 (AKA GmbH, 2002), pp. 283–290.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic diagram of camera to capture elementary images.

Fig. 2.
Fig. 2.

Zone plates of CGH using MVI: (a) generated by plane wave assumption, (b) generated by spherical wave assumption.

Fig. 3.
Fig. 3.

Hologram plane and camera arrangement for calculation of plane hologram.

Fig. 4.
Fig. 4.

3D model estimation using SFS.

Fig. 5.
Fig. 5.

Schematic diagram of volume rendering for proposed method.

Fig. 6.
Fig. 6.

Camera arrangement: (a) for capturing elementary images for experiment I, (b) for SFS.

Fig. 7.
Fig. 7.

Selected elementary images captured of “Bunny”: (a) conventional method, (b) proposed method.

Fig. 8.
Fig. 8.

Magnifications of elementary images of “Bunny”: (a) conventional method, (b) proposed method.

Fig. 9.
Fig. 9.

Reconstructed images of “Bunny” by a computer simulation: (a) conventional method, (b) proposed method.

Fig. 10.
Fig. 10.

Distance and direction of hologram plane.

Fig. 11.
Fig. 11.

Reconstructed images of “Crane”: (a) hologram 1, (b) hologram 2, (c) hologram 3, (d) hologram 4.

Fig. 12.
Fig. 12.

Captured images of “Crane” to compare: (a) with hologram 1, (b) with hologram 2, (c) with hologram 3, (d) with hologram 4.

Fig. 13.
Fig. 13.

Reconstructed images of “Knight”: (a) hologram 3, (b) hologram 4.

Fig. 14.
Fig. 14.

Captured images of “Knight” to compare: (a) with hologram 3, (b) with hologram 4.

Tables (3)

Tables Icon

Table 1. Parameters of Experiments

Tables Icon

Table 2. Distance and Directions of Holograms for Experiment II

Tables Icon

Table 3. Calculation Time of Each Process in Proposed Method

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

θ ξ = tan 1 X D L ,
θ η = tan 1 Y D L ,
f ξ = sin θ ξ λ = sin ( tan 1 X D L ) λ ,
f η = sin θ η λ = sin ( tan 1 Y D L ) λ ,
Q ( f ξ , f η ) = Q ( f ξ , f η ) exp [ j σ ( f ξ , f η ) ] ,
q ( ξ , η ) = F 1 [ Q ( f ξ , f η ) ] .
q s ( ξ , η ) = q ( ξ , η ) exp [ j π λ z e ( ξ 2 + η 2 ) ] ,
I ( u , v ) = h ( u , v ) + r ( u , v ) 2 ,
H = V 1 V 2 V i V N C .
p ˜ i = T i M ˜ ,
φ i = cos 1 ( n H · n C i ) .
k = argmin 1 i N C φ i .
B V ( M ˜ ) = B I ( T k M ˜ ) .
p E = M + t ( O E M ) ,
t = n H · ( M O E ) D H n E · ( M O E ) ,

Metrics