Abstract

Digital holographic interferometry in the long-wave infrared domain has been developed by combining a CO2 laser and a microbolometer array. The long wavelength allows large deformation measurements, which are of interest in the case of large space reflectors undergoing thermal changes when in orbit. We review holography at such wavelengths and present some specific aspects related to this spectral range on our measurements. For the design of our digital holographic interferometer, we studied the possibility of illuminating specular objects by a reflective diffuser. We discuss the development of the interferometer and the results obtained on a representative space reflector, first in the laboratory and then during vacuum cryogenic test.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Malacara, ed., Optical Shop Testing (Wiley-VCH, 2007).
  2. T. Kreis, Handbook of Holographic Interferometry—Optical and Digital Methods (Wiley-VCH, 2005).
  3. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
    [CrossRef]
  4. M. A. Sutton, J.-J. Orteu, and H. W. Schreifer, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).
  5. X. Su and Q. Zhang, “Dynamic 3-D shape measurement: a review,” Opt. Lasers Eng. 48, 191–204 (2010).
    [CrossRef]
  6. R. S. Pappa, J. T. Black, J. R. Blandino, T. W. Jones, P. M. Danehy, and A. A. Dorrington, “Dot-projection photogrammetry and videogrammetry of Gossamer space structures,” J. Spacecr. Rockets 40, 858–867 (2003).
    [CrossRef]
  7. C. S. Fraser, “Photogrammetric measurement to one part in a million,” Photogramm. Eng. Remote Sens. 53, 305–310 (1992).
  8. J. A. Parian, A. Gruen, and A. Cozzani, “Monitoring of the reflectors of ESA’s Planck telescope by close-range photogrammetry,” J. Appl. Geodesy 1, 137–145 (2007).
    [CrossRef]
  9. O. Kwon, J. C. Wyant, and C. R. Hayslett, “Rough surface interferometry at 10.6 μm,” Appl. Opt. 19, 1862–1869 (1980).
    [CrossRef]
  10. K. Verma and B. Han, “Far-infrared Fizeau interferometry,” Appl. Opt. 40, 4981–4987 (2001).
    [CrossRef]
  11. N. Ninane and A. Mazzoli, “Development of a high spatial resolution interferometer,” ESA General Support Technology Programme, contract Nr 16286/02/NL/PA, Summary Rep., May 2005, available upon request to the authors.
  12. http://www.esa.int/SPECIALS/Planck/index.html .
  13. S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
    [CrossRef]
  14. N. Ninane and M. P. Georges, “Holographic interferometry using two-wavelength holography for the measurement of large deformations,” Appl. Opt. 34, 1923–1928 (1995).
    [CrossRef]
  15. M. P. Georges and Ph. C. Lemaire, “Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects,” Appl. Phys. B 68, 1073–1083 (1999).
    [CrossRef]
  16. M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B 72, 761–765 (2001).
    [CrossRef]
  17. C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
    [CrossRef]
  18. C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.
  19. C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
  20. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [CrossRef]
  21. U. Schnars and W. Jueptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef]
  22. U. Schnars and W. Jueptner, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994).
    [CrossRef]
  23. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Reconstruction Principle, and Related Techniques (Springer, 2005).
  24. T.-C. Poon, Digital Holography and Three-Dimensional Display (Springer, 2006).
  25. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. I. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006).
    [CrossRef]
  26. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 453456–3462 (2006).
    [CrossRef]
  27. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
    [CrossRef]
  28. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
    [CrossRef]
  29. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19, 9192–9200 (2011).
    [CrossRef]
  30. R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260, 469–473 (2006).
    [CrossRef]
  31. J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
    [CrossRef]
  32. R. R. Roberts and T. D. Black, “Infrared holograms recorded at 10.6 μm and reconstructed at 0.6328 μm,” Appl. Opt. 15, 2018–2019 (1976).
    [CrossRef]
  33. W. A. Simpson and W. E. Deeds, “Real-time visual reconstruction of infrared holograms,” Appl. Opt. 9, 499–501 (1970).
    [CrossRef]
  34. S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971).
    [CrossRef]
  35. G. Decker, H. Herold, and H. Röhr, “Holography and holographic interferometry with pulsed high power infrared lasers,” Appl. Phys. Lett. 20, 490–492 (1972).
    [CrossRef]
  36. P. R. Forman, S. Humphries, and R. W. Peterson, “Pulsed holographic interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537–539 (1973).
    [CrossRef]
  37. M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6 μm,” Appl. Opt. 16, 1876–1879 (1977).
    [CrossRef]
  38. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
    [CrossRef]
  39. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
    [CrossRef]
  40. J. Lewandowski, B. Mongeau, and M. Cormier, “Real-time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984).
    [CrossRef]
  41. R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 μm,” Proc. SPIE 2042, 259–263 (1994).
  42. R. Beaulieu, R. A. Lessard, and S. Ling Chin, “Recording of infrared radiation (10.6 μm) in a tetrafluoroethylene copolymer of vinylidene fluoride,” in Proceedings of the International Conference on Lasers ’94 (STS Press, 1994), pp. 758–762.
  43. R. Beaulieu and R. A. Lessard, “Infrared holography on poly (acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000).
    [CrossRef]
  44. S. Calixto, “Albumen as a relief recording media for spatial distributions of infrared radiation. fabrication of interference gratings and microlenses,” Appl. Opt. 42, 259–263 (2003).
    [CrossRef]
  45. O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984).
    [CrossRef]
  46. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
    [CrossRef]
  47. P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).
  48. S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
    [CrossRef]
  49. J. L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the-art and trends,” Opto-Electron. Rev. 12, 105–109(2004).
  50. N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12 (2008).
    [CrossRef]
  51. B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
  52. J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 66162Q1 (2007).
  53. J.-F. Vandenrijt, and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
    [CrossRef]
  54. I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
    [CrossRef]
  55. I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. Georges, “Nondestructive testing by using long wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013)..
  56. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010).
    [CrossRef]
  57. A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011).
    [CrossRef]
  58. A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010).
    [CrossRef]
  59. T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
    [CrossRef]
  60. Ø. Skotheim, “HoloVision: a software package for reconstruction and analysis of digitally sampled holograms,” Proc. SPIE 4933, 311–316 (2003).
    [CrossRef]
  61. I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
    [CrossRef]
  62. J. C. Stover, Optical Scattering—Measurement and Analysis (McGraw-Hill, 1990).
  63. J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.
  64. R. Pawluczyk and Z. Kraska, “Diffusive illumination in holographic double-aperture interferometry,” Appl. Opt. 24, 3072–3078 (1985).
    [CrossRef]
  65. R. S. Hansen, “Deformation measurement of specularly reflecting objects using holographic interferometry with diffusive illumination,” Opt. Lasers Eng. 28, 259–275(1997).
    [CrossRef]
  66. R. S. Hansen, “A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces,” Opt. Lasers Eng. 41, 73–80 (2004).
    [CrossRef]
  67. F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
    [CrossRef]
  68. http://smsc.cnes.fr/HERSCHEL/index.htm .
  69. J. Mundt and T. Kreis, “Digital holographic recording and reconstruction of large objects for metrology and display,” Opt. Eng. 49, 125801 (2010).
    [CrossRef]
  70. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
    [CrossRef]
  71. http://www.csl.ulg.ac.be/index.php?page=37 .

2013 (1)

2011 (2)

A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011).
[CrossRef]

M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19, 9192–9200 (2011).
[CrossRef]

2010 (7)

A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
[CrossRef]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement: a review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010).
[CrossRef]

J.-F. Vandenrijt, and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
[CrossRef]

I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[CrossRef]

J. Mundt and T. Kreis, “Digital holographic recording and reconstruction of large objects for metrology and display,” Opt. Eng. 49, 125801 (2010).
[CrossRef]

2008 (4)

N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12 (2008).
[CrossRef]

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
[CrossRef]

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

2007 (2)

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 66162Q1 (2007).

J. A. Parian, A. Gruen, and A. Cozzani, “Monitoring of the reflectors of ESA’s Planck telescope by close-range photogrammetry,” J. Appl. Geodesy 1, 137–145 (2007).
[CrossRef]

2006 (5)

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. I. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006).
[CrossRef]

G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 453456–3462 (2006).
[CrossRef]

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260, 469–473 (2006).
[CrossRef]

2005 (1)

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

2004 (2)

J. L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the-art and trends,” Opto-Electron. Rev. 12, 105–109(2004).

R. S. Hansen, “A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces,” Opt. Lasers Eng. 41, 73–80 (2004).
[CrossRef]

2003 (5)

Ø. Skotheim, “HoloVision: a software package for reconstruction and analysis of digitally sampled holograms,” Proc. SPIE 4933, 311–316 (2003).
[CrossRef]

I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
[CrossRef]

S. Calixto, “Albumen as a relief recording media for spatial distributions of infrared radiation. fabrication of interference gratings and microlenses,” Appl. Opt. 42, 259–263 (2003).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

R. S. Pappa, J. T. Black, J. R. Blandino, T. W. Jones, P. M. Danehy, and A. A. Dorrington, “Dot-projection photogrammetry and videogrammetry of Gossamer space structures,” J. Spacecr. Rockets 40, 858–867 (2003).
[CrossRef]

2001 (2)

K. Verma and B. Han, “Far-infrared Fizeau interferometry,” Appl. Opt. 40, 4981–4987 (2001).
[CrossRef]

M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B 72, 761–765 (2001).
[CrossRef]

2000 (2)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

R. Beaulieu and R. A. Lessard, “Infrared holography on poly (acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000).
[CrossRef]

1999 (2)

M. P. Georges and Ph. C. Lemaire, “Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects,” Appl. Phys. B 68, 1073–1083 (1999).
[CrossRef]

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

1998 (1)

1997 (2)

R. S. Hansen, “Deformation measurement of specularly reflecting objects using holographic interferometry with diffusive illumination,” Opt. Lasers Eng. 28, 259–275(1997).
[CrossRef]

T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

1995 (1)

1994 (3)

1992 (1)

C. S. Fraser, “Photogrammetric measurement to one part in a million,” Photogramm. Eng. Remote Sens. 53, 305–310 (1992).

1985 (1)

1984 (2)

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984).
[CrossRef]

J. Lewandowski, B. Mongeau, and M. Cormier, “Real-time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984).
[CrossRef]

1980 (1)

1978 (1)

1977 (2)

M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6 μm,” Appl. Opt. 16, 1876–1879 (1977).
[CrossRef]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

1976 (1)

1973 (1)

P. R. Forman, S. Humphries, and R. W. Peterson, “Pulsed holographic interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537–539 (1973).
[CrossRef]

1972 (1)

G. Decker, H. Herold, and H. Röhr, “Holography and holographic interferometry with pulsed high power infrared lasers,” Appl. Phys. Lett. 20, 490–492 (1972).
[CrossRef]

1971 (1)

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

1970 (1)

1969 (1)

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Alexeenko, I.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. Georges, “Nondestructive testing by using long wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013)..

I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[CrossRef]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.

Allaria, E.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Arecchi, F. T.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

Beaulieu, R.

R. Beaulieu and R. A. Lessard, “Infrared holography on poly (acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000).
[CrossRef]

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 μm,” Proc. SPIE 2042, 259–263 (1994).

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
[CrossRef]

M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6 μm,” Appl. Opt. 16, 1876–1879 (1977).
[CrossRef]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

R. Beaulieu, R. A. Lessard, and S. Ling Chin, “Recording of infrared radiation (10.6 μm) in a tetrafluoroethylene copolymer of vinylidene fluoride,” in Proceedings of the International Conference on Lasers ’94 (STS Press, 1994), pp. 758–762.

Bélanger, D.

Black, J. T.

R. S. Pappa, J. T. Black, J. R. Blandino, T. W. Jones, P. M. Danehy, and A. A. Dorrington, “Dot-projection photogrammetry and videogrammetry of Gossamer space structures,” J. Spacecr. Rockets 40, 858–867 (2003).
[CrossRef]

Black, T. D.

Blanchard, M.

Blandino, J. R.

R. S. Pappa, J. T. Black, J. R. Blandino, T. W. Jones, P. M. Danehy, and A. A. Dorrington, “Dot-projection photogrammetry and videogrammetry of Gossamer space structures,” J. Spacecr. Rockets 40, 858–867 (2003).
[CrossRef]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Brugioni, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Buah-Bassuah, P. K.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

Calixto, S.

Callens, N.

Cédric, T.

I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[CrossRef]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Chi, W.

Chin, S. L.

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 μm,” Proc. SPIE 2042, 259–263 (1994).

Chivian, J. S.

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Claytor, R. N.

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Cormier, M.

Cozzani, A.

J. A. Parian, A. Gruen, and A. Cozzani, “Monitoring of the reflectors of ESA’s Planck telescope by close-range photogrammetry,” J. Appl. Geodesy 1, 137–145 (2007).
[CrossRef]

Crastes, A.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).

Daddato, R.

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

Danehy, P. M.

R. S. Pappa, J. T. Black, J. R. Blandino, T. W. Jones, P. M. Danehy, and A. A. Dorrington, “Dot-projection photogrammetry and videogrammetry of Gossamer space structures,” J. Spacecr. Rockets 40, 858–867 (2003).
[CrossRef]

de Chambure, D.

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

De Nicola, S.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Decker, G.

G. Decker, H. Herold, and H. Röhr, “Holography and holographic interferometry with pulsed high power infrared lasers,” Appl. Phys. Lett. 20, 490–492 (1972).
[CrossRef]

Deeds, W. E.

Dewandel, J.-L.

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

Dorrington, A. A.

R. S. Pappa, J. T. Black, J. R. Blandino, T. W. Jones, P. M. Danehy, and A. A. Dorrington, “Dot-projection photogrammetry and videogrammetry of Gossamer space structures,” J. Spacecr. Rockets 40, 858–867 (2003).
[CrossRef]

Doyle, D.

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

Dubois, F.

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. I. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006).
[CrossRef]

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

Dupont, O.

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

Eden, D. D.

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Eigenthaler, U.

Everitt, H. O.

Faridian, A.

Ferraro, P.

A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011).
[CrossRef]

A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010).
[CrossRef]

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Fièque, B.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).

Finizio, A.

Forman, P. R.

P. R. Forman, S. Humphries, and R. W. Peterson, “Pulsed holographic interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537–539 (1973).
[CrossRef]

Fraser, C. S.

C. S. Fraser, “Photogrammetric measurement to one part in a million,” Photogramm. Eng. Remote Sens. 53, 305–310 (1992).

Geltrude, A.

A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010).
[CrossRef]

A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010).
[CrossRef]

George, N.

Georges, M.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. Georges, “Nondestructive testing by using long wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013)..

J.-F. Vandenrijt, and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
[CrossRef]

I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[CrossRef]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 66162Q1 (2007).

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.

Georges, M. P.

M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B 72, 761–765 (2001).
[CrossRef]

M. P. Georges and Ph. C. Lemaire, “Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects,” Appl. Phys. B 68, 1073–1083 (1999).
[CrossRef]

N. Ninane and M. P. Georges, “Holographic interferometry using two-wavelength holography for the measurement of large deformations,” Appl. Opt. 34, 1923–1928 (1995).
[CrossRef]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Gregory, D. A.

Grilli, S.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Gruen, A.

J. A. Parian, A. Gruen, and A. Cozzani, “Monitoring of the reflectors of ESA’s Planck telescope by close-range photogrammetry,” J. Appl. Geodesy 1, 137–145 (2007).
[CrossRef]

Gusev, M. E.

Han, B.

Hansen, R. S.

R. S. Hansen, “A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces,” Opt. Lasers Eng. 41, 73–80 (2004).
[CrossRef]

R. S. Hansen, “Deformation measurement of specularly reflecting objects using holographic interferometry with diffusive illumination,” Opt. Lasers Eng. 28, 259–275(1997).
[CrossRef]

Hayslett, C. R.

Heimbeck, M. S.

Herold, H.

G. Decker, H. Herold, and H. Röhr, “Holography and holographic interferometry with pulsed high power infrared lasers,” Appl. Phys. Lett. 20, 490–492 (1972).
[CrossRef]

Hirscher, M.

Hopp, D.

Houbrechts, Y.

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

Hoyos, M.

Humphries, S.

P. R. Forman, S. Humphries, and R. W. Peterson, “Pulsed holographic interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537–539 (1973).
[CrossRef]

Joannes, L.

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

Jones, T. W.

R. S. Pappa, J. T. Black, J. R. Blandino, T. W. Jones, P. M. Danehy, and A. A. Dorrington, “Dot-projection photogrammetry and videogrammetry of Gossamer space structures,” J. Spacecr. Rockets 40, 858–867 (2003).
[CrossRef]

Jorge, I.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.

Jueptner, W.

Jüptner, W.

T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

Khare, K.

Kim, M. K.

Kirschner, V.

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

Kobayashi, S.

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

Kraska, Z.

Kreis, T.

J. Mundt and T. Kreis, “Digital holographic recording and reconstruction of large objects for metrology and display,” Opt. Eng. 49, 125801 (2010).
[CrossRef]

T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

T. Kreis, Handbook of Holographic Interferometry—Optical and Digital Methods (Wiley-VCH, 2005).

Kruse, P. W.

P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).

Kurihara, K.

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

Kurowski, P. I.

Kwon, O.

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984).
[CrossRef]

O. Kwon, J. C. Wyant, and C. R. Hayslett, “Rough surface interferometry at 10.6 μm,” Appl. Opt. 19, 1862–1869 (1980).
[CrossRef]

Lanigan, W.

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260, 469–473 (2006).
[CrossRef]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Legras, O.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).

Legros, J.-C.

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

Lemaire, P.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

Lemaire, Ph.

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

Lemaire, Ph. C.

M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B 72, 761–765 (2001).
[CrossRef]

M. P. Georges and Ph. C. Lemaire, “Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects,” Appl. Phys. B 68, 1073–1083 (1999).
[CrossRef]

Lessard, R. A.

R. Beaulieu and R. A. Lessard, “Infrared holography on poly (acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000).
[CrossRef]

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 μm,” Proc. SPIE 2042, 259–263 (1994).

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
[CrossRef]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

R. Beaulieu, R. A. Lessard, and S. Ling Chin, “Recording of infrared radiation (10.6 μm) in a tetrafluoroethylene copolymer of vinylidene fluoride,” in Proceedings of the International Conference on Lasers ’94 (STS Press, 1994), pp. 758–762.

Leval, J.

Lewandowski, J.

Ling Chin, S.

R. Beaulieu, R. A. Lessard, and S. Ling Chin, “Recording of infrared radiation (10.6 μm) in a tetrafluoroethylene copolymer of vinylidene fluoride,” in Proceedings of the International Conference on Lasers ’94 (STS Press, 1994), pp. 758–762.

Locatelli, M.

A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011).
[CrossRef]

A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010).
[CrossRef]

Løkberg, O. J.

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984).
[CrossRef]

López, I.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.

Mahon, R. J.

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260, 469–473 (2006).
[CrossRef]

Mazy, E.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

Mazzoli, A.

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

Meucci, R.

A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010).
[CrossRef]

A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010).
[CrossRef]

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Miccio, L.

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010).
[CrossRef]

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

Minassian, C.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).

Mongeau, B.

Monnom, O.

Mundt, J.

J. Mundt and T. Kreis, “Digital holographic recording and reconstruction of large objects for metrology and display,” Opt. Eng. 49, 125801 (2010).
[CrossRef]

Murphy, J. A.

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260, 469–473 (2006).
[CrossRef]

Ninane, N.

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

N. Ninane and M. P. Georges, “Holographic interferometry using two-wavelength holography for the measurement of large deformations,” Appl. Opt. 34, 1923–1928 (1995).
[CrossRef]

Orteu, J.-J.

M. A. Sutton, J.-J. Orteu, and H. W. Schreifer, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).

Osten, W.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. Georges, “Nondestructive testing by using long wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013)..

I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[CrossRef]

A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
[CrossRef]

G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 453456–3462 (2006).
[CrossRef]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.

Pappa, R. S.

R. S. Pappa, J. T. Black, J. R. Blandino, T. W. Jones, P. M. Danehy, and A. A. Dorrington, “Dot-projection photogrammetry and videogrammetry of Gossamer space structures,” J. Spacecr. Rockets 40, 858–867 (2003).
[CrossRef]

Parian, J. A.

J. A. Parian, A. Gruen, and A. Cozzani, “Monitoring of the reflectors of ESA’s Planck telescope by close-range photogrammetry,” J. Appl. Geodesy 1, 137–145 (2007).
[CrossRef]

Paturzo, M.

A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010).
[CrossRef]

A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010).
[CrossRef]

Pawluczyk, R.

Pedrini, G.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. Georges, “Nondestructive testing by using long wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013)..

I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[CrossRef]

A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
[CrossRef]

G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 453456–3462 (2006).
[CrossRef]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.

Pelagotti, A.

A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011).
[CrossRef]

A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010).
[CrossRef]

Peterson, R. W.

P. R. Forman, S. Humphries, and R. W. Peterson, “Pulsed holographic interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537–539 (1973).
[CrossRef]

Picart, P.

Poggi, P.

A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011).
[CrossRef]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35, 2112–2114 (2010).
[CrossRef]

A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010).
[CrossRef]

Poon, T.-C.

T.-C. Poon, Digital Holography and Three-Dimensional Display (Springer, 2006).

Rioux, M.

Robert, P.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).

Roberts, R. R.

Röhr, H.

G. Decker, H. Herold, and H. Röhr, “Holography and holographic interferometry with pulsed high power infrared lasers,” Appl. Phys. Lett. 20, 490–492 (1972).
[CrossRef]

Roose, S.

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

Sáez de Ocáriz, I.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.

Scauflaire, V. S.

M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B 72, 761–765 (2001).
[CrossRef]

Schnars, U.

Schreifer, H. W.

M. A. Sutton, J.-J. Orteu, and H. W. Schreifer, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).

Simpson, W. A.

Skotheim, Ø.

Ø. Skotheim, “HoloVision: a software package for reconstruction and analysis of digitally sampled holograms,” Proc. SPIE 4933, 311–316 (2003).
[CrossRef]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Stockman, Y.

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

Stover, J. C.

J. C. Stover, Optical Scattering—Measurement and Analysis (McGraw-Hill, 1990).

Su, X.

X. Su and Q. Zhang, “Dynamic 3-D shape measurement: a review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

Sutton, M. A.

M. A. Sutton, J.-J. Orteu, and H. W. Schreifer, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).

Thizy, C.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. Georges, “Nondestructive testing by using long wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013)..

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.

Tissot, J. L.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).

J. L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the-art and trends,” Opto-Electron. Rev. 12, 105–109(2004).

Tychon, I.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

Ulbrich, G.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

Vandenrijt, J.-F.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. Georges, “Nondestructive testing by using long wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013)..

J.-F. Vandenrijt, and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
[CrossRef]

I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[CrossRef]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 66162Q1 (2007).

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.

Venacio, L.

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

Verma, K.

Vilain, M.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).

Vollheim, B.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. Georges, “Nondestructive testing by using long wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013)..

I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[CrossRef]

Wyant, J. C.

Yamaguchi, I.

Yon, J. J.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).

Yourassowsky, C.

Zhang, Q.

X. Su and Q. Zhang, “Dynamic 3-D shape measurement: a review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

Zhang, T.

3D Res. (1)

A. Pelagotti, M. Paturzo, A. Geltrude, M. Locatelli, R. Meucci, P. Poggi, and P. Ferraro, “Digital holography for 3D imaging and display in the IR range: challenges and opportunities,” 3D Res. 1, 1–10 (2010).
[CrossRef]

Appl. Mech. Mater. (1)

I. Alexeenko, J.-F. Vandenrijt, M. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[CrossRef]

Appl. Opt. (16)

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. Georges, “Nondestructive testing by using long wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013)..

R. Pawluczyk and Z. Kraska, “Diffusive illumination in holographic double-aperture interferometry,” Appl. Opt. 24, 3072–3078 (1985).
[CrossRef]

J.-F. Vandenrijt, and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
[CrossRef]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
[CrossRef]

J. Lewandowski, B. Mongeau, and M. Cormier, “Real-time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984).
[CrossRef]

M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6 μm,” Appl. Opt. 16, 1876–1879 (1977).
[CrossRef]

S. Calixto, “Albumen as a relief recording media for spatial distributions of infrared radiation. fabrication of interference gratings and microlenses,” Appl. Opt. 42, 259–263 (2003).
[CrossRef]

N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12 (2008).
[CrossRef]

O. Kwon, J. C. Wyant, and C. R. Hayslett, “Rough surface interferometry at 10.6 μm,” Appl. Opt. 19, 1862–1869 (1980).
[CrossRef]

K. Verma and B. Han, “Far-infrared Fizeau interferometry,” Appl. Opt. 40, 4981–4987 (2001).
[CrossRef]

N. Ninane and M. P. Georges, “Holographic interferometry using two-wavelength holography for the measurement of large deformations,” Appl. Opt. 34, 1923–1928 (1995).
[CrossRef]

U. Schnars and W. Jueptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. I. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006).
[CrossRef]

G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 453456–3462 (2006).
[CrossRef]

R. R. Roberts and T. D. Black, “Infrared holograms recorded at 10.6 μm and reconstructed at 0.6328 μm,” Appl. Opt. 15, 2018–2019 (1976).
[CrossRef]

W. A. Simpson and W. E. Deeds, “Real-time visual reconstruction of infrared holograms,” Appl. Opt. 9, 499–501 (1970).
[CrossRef]

Appl. Phys. B (2)

M. P. Georges and Ph. C. Lemaire, “Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects,” Appl. Phys. B 68, 1073–1083 (1999).
[CrossRef]

M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B 72, 761–765 (2001).
[CrossRef]

Appl. Phys. Lett. (6)

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971).
[CrossRef]

G. Decker, H. Herold, and H. Röhr, “Holography and holographic interferometry with pulsed high power infrared lasers,” Appl. Phys. Lett. 20, 490–492 (1972).
[CrossRef]

P. R. Forman, S. Humphries, and R. W. Peterson, “Pulsed holographic interferometry at 10.6 μm,” Appl. Phys. Lett. 22, 537–539 (1973).
[CrossRef]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

J. Appl. Geodesy (1)

J. A. Parian, A. Gruen, and A. Cozzani, “Monitoring of the reflectors of ESA’s Planck telescope by close-range photogrammetry,” J. Appl. Geodesy 1, 137–145 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Spacecr. Rockets (1)

R. S. Pappa, J. T. Black, J. R. Blandino, T. W. Jones, P. M. Danehy, and A. A. Dorrington, “Dot-projection photogrammetry and videogrammetry of Gossamer space structures,” J. Spacecr. Rockets 40, 858–867 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

Opt. Commun. (3)

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008).
[CrossRef]

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260, 469–473 (2006).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Opt. Eng. (3)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

J. Mundt and T. Kreis, “Digital holographic recording and reconstruction of large objects for metrology and display,” Opt. Eng. 49, 125801 (2010).
[CrossRef]

T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984).
[CrossRef]

Opt. Lasers Eng. (3)

R. S. Hansen, “Deformation measurement of specularly reflecting objects using holographic interferometry with diffusive illumination,” Opt. Lasers Eng. 28, 259–275(1997).
[CrossRef]

R. S. Hansen, “A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces,” Opt. Lasers Eng. 41, 73–80 (2004).
[CrossRef]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement: a review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

Opt. Lett. (2)

Opto-Electron. Rev. (1)

J. L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the-art and trends,” Opto-Electron. Rev. 12, 105–109(2004).

Photogramm. Eng. Remote Sens. (1)

C. S. Fraser, “Photogrammetric measurement to one part in a million,” Photogramm. Eng. Remote Sens. 53, 305–310 (1992).

Proc. SPIE (10)

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[CrossRef]

S. Roose, Y. Houbrechts, A. Mazzoli, N. Ninane, Y. Stockman, R. Daddato, V. Kirschner, L. Venacio, and D. de Chambure, “Cryo-optical testing of large aspheric reflectors operating in the sub mm range,” Proc. SPIE 6148, 61480F (2006).
[CrossRef]

C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 66162Q1 (2007).

R. Beaulieu and R. A. Lessard, “Infrared holography on poly (acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000).
[CrossRef]

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 μm,” Proc. SPIE 2042, 259–263 (1994).

A. Geltrude, M. Locatelli, P. Poggi, A. Pelagotti, M. Paturzo, P. Ferraro, and R. Meucci, “Infrared digital holography for large objects investigation,” Proc. SPIE 8082, 80820C (2011).
[CrossRef]

Ø. Skotheim, “HoloVision: a software package for reconstruction and analysis of digitally sampled holograms,” Proc. SPIE 4933, 311–316 (2003).
[CrossRef]

I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
[CrossRef]

Other (14)

J. C. Stover, Optical Scattering—Measurement and Analysis (McGraw-Hill, 1990).

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. Sáez de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Proceedings of Fringe 2009, 6th International Workshop on Advanced Optical Metrology (Springer, 2009), pp. 1–4.

http://www.csl.ulg.ac.be/index.php?page=37 .

http://smsc.cnes.fr/HERSCHEL/index.htm .

R. Beaulieu, R. A. Lessard, and S. Ling Chin, “Recording of infrared radiation (10.6 μm) in a tetrafluoroethylene copolymer of vinylidene fluoride,” in Proceedings of the International Conference on Lasers ’94 (STS Press, 1994), pp. 758–762.

P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Reconstruction Principle, and Related Techniques (Springer, 2005).

T.-C. Poon, Digital Holography and Three-Dimensional Display (Springer, 2006).

C. Thizy, Y. Stockman, Ph. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, and G. Ulbrich, “Qualification of large reflectors in space environment with a holographic camera based on a BSO crystal,” in Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. Nolte, and J. Xu, eds., Vol. 99 of OSA Trends in Optics and Photonics, (Optical Society of America, 2005), paper 707.

N. Ninane and A. Mazzoli, “Development of a high spatial resolution interferometer,” ESA General Support Technology Programme, contract Nr 16286/02/NL/PA, Summary Rep., May 2005, available upon request to the authors.

http://www.esa.int/SPECIALS/Planck/index.html .

M. A. Sutton, J.-J. Orteu, and H. W. Schreifer, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).

D. Malacara, ed., Optical Shop Testing (Wiley-VCH, 2007).

T. Kreis, Handbook of Holographic Interferometry—Optical and Digital Methods (Wiley-VCH, 2005).

Supplementary Material (1)

» Media 1: AVI (3946 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a) Typical thermal background in an LWIR lensless DH setup and (b) contribution to the numerical reconstruction.

Fig. 2.
Fig. 2.

Potential schemes for DH setup for large specular reflector.

Fig. 3.
Fig. 3.

Setup at 532 nm for studying DH on specular object illuminated by a reflective diffuser.

Fig. 4.
Fig. 4.

(a) Numerical reconstruction of the hologram, (b) masked object at focused position, and (c) zoom of speckle located on the specular object.

Fig. 5.
Fig. 5.

Observation of speckle (zoomed image) reflected by a specular object rotated out of plane: (a) DH reconstruction correctly focused on specular object and (b) DH not correctly focused.

Fig. 6.
Fig. 6.

Setup for studying DH in LWIR on specular object illuminated by a reflective diffuser.

Fig. 7.
Fig. 7.

Numerical reconstruction of a plane mirror by DH in the LWIR: (a) amplitude, (b) amplitude after filtering of DC term and HROT, (c) phase difference after rotation of mirror, (d) excerpt of phase difference on the mirror zone.

Fig. 8.
Fig. 8.

Comparison between the measurements of rotation angle from LWIR DHI of a mirror illuminated by reflective diffuser and those measured directly on the same mirror using a commercial interferometer.

Fig. 9.
Fig. 9.

FIRST demonstration reflector on its mount.

Fig. 10.
Fig. 10.

Final design of the LWIR DH interferometer with diffuse illumination for large space reflector.

Fig. 11.
Fig. 11.

Geometry of the DH recording setup.

Fig. 12.
Fig. 12.

Application of phase-shifting DH to the FIRST reflector with diffuse illumination. (a) Modulus and (b) phase difference after out-of-plane rotation of the reflector.

Fig. 13.
Fig. 13.

Scheme of the DH interferometer implemented in the vacuum chamber FOCAL5 of the CSL.

Fig. 14.
Fig. 14.

Displacement field obtained between 224 and 107.5 K. (a) Phase difference, (b) after masking and median filtering, (c) after phase unwrapping, (d) 3D plot of total displacement (Media 1 shows increasing displacement when temperature changes).

Fig. 15.
Fig. 15.

Comparison between previous results obtained (a) by LWIR interferometer with null lens and (b) DHI, both after removal of tilt and defocus showing comparable and reproducible deformations.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Uo(x,y)=iλdexp(i2πλd)exp[iπλd(x2+y2)]×IH(ξ,η)R(ξ,η)exp[iπλd(ξ2+η2)]exp[i2πλd(xξ+yη)]dξdη.
Uo(m,n)=iλdexp(i2πλd)exp[iπλd(m2M2Δξ2+n2N2Δη2)]×k=0M1l=0N1R(k,l)IH(k,l)exp[iπλd(k2Δξ2+l2Δη2)].
φ(m,n)=tan1[Im(Uo(m,n))Re(Uo(m,n))].
θmax=2arcsin(λ4Δ),
IH=IHIRIOITherm.
IH=IH,m[IR,mITherm,m][IO,mITherm,m]ITherm,m=IH,mIR,mIO,m+ITherm,m.
L+NΔ2d=tanθ2θ2=λ4Δ,
Lmax=λd2NΔ22Δ.
Lmax=λd2N(f4f5Δ)22(f4f5Δ),

Metrics