Abstract

A relative humidity (RH) sensor based on long-period grating (LPG) with different responses is proposed by utilizing agarose gel as the sensitive cladding film. The spectral characteristic is discussed as the ambient humidity level ranges from 25% to 95% RH. Since increment of RH will result in volume expansion and refractive index increment of the agarose gel, the LPG is sensitive to applied strain and ambient refractive index; both the resonance wavelength and coupling intensity present particular responses to RH within two different RH ranges (25%–65% RH and 65%–96% RH). The coupling intensity decreases within a lower RH range while it increases throughout a higher RH range. The resonance wavelength is sensitive to the higher RH levels, and the highest sensitivity reaches 114.7pm/%RH, and shares the same RH turning point with coupling intensity response. From a practical perspective, the proposed RH sensor would find its potential applications in high humidity level, temperature-independent RH sensing and multiparameter sensing based on wavelength/power hybrid demodulation and even static RH alarm for automatic monitoring of a particular RH value owing to the nonmonotonic RH dependence of the transmission power within the whole tested RH range.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Opt. Lett. 29, 1191–1193 (2004).
    [CrossRef]
  2. J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” IEEE J. Lightwave Technol. 24, 4329–4336 (2006).
    [CrossRef]
  3. I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7, 89–95 (2007).
    [CrossRef]
  4. S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
    [CrossRef]
  5. P. Kronenbery, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27, 1385–1387 (2002).
    [CrossRef]
  6. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–155 (2005).
    [CrossRef]
  7. Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
    [CrossRef]
  8. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir–Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002).
    [CrossRef]
  9. L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “A relative humidity sensor using a hydrogel-coated long period grating,” Meas. Sci. Technol. 18, 3131–3134 (2007).
    [CrossRef]
  10. F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B 96, 165–172(2003).
    [CrossRef]
  11. K. M. Tan, C. C. Chan, L. Mohanty, and C. Meng Tay, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
    [CrossRef]
  12. P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27, 1385–1387 (2002).
    [CrossRef]
  13. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45, 4567–4571 (2006).
    [CrossRef]
  14. J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Enhanced sensitivity in humidity sensors based on long period fiber gratings,” presented at IEEE SENSORS, EXCO, Daegu, Korea, October 22–25, 2006.
  15. J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. Nanotechnol. 7, 394–400 (2008).
    [CrossRef]
  16. D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
    [CrossRef]
  17. K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
    [CrossRef]
  18. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760–1773(1997).
    [CrossRef]
  19. S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
    [CrossRef]
  20. Z. H. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92, 044105 (2008).
    [CrossRef]

2009

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

2008

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. Nanotechnol. 7, 394–400 (2008).
[CrossRef]

Z. H. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92, 044105 (2008).
[CrossRef]

2007

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “A relative humidity sensor using a hydrogel-coated long period grating,” Meas. Sci. Technol. 18, 3131–3134 (2007).
[CrossRef]

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7, 89–95 (2007).
[CrossRef]

2006

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” IEEE J. Lightwave Technol. 24, 4329–4336 (2006).
[CrossRef]

M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45, 4567–4571 (2006).
[CrossRef]

2005

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–155 (2005).
[CrossRef]

K. M. Tan, C. C. Chan, L. Mohanty, and C. Meng Tay, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

2004

2003

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B 96, 165–172(2003).
[CrossRef]

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

2002

1997

Amano, T.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Araújo, F. M.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

Arregui, F. J.

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. Nanotechnol. 7, 394–400 (2008).
[CrossRef]

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7, 89–95 (2007).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” IEEE J. Lightwave Technol. 24, 4329–4336 (2006).
[CrossRef]

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B 96, 165–172(2003).
[CrossRef]

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Enhanced sensitivity in humidity sensors based on long period fiber gratings,” presented at IEEE SENSORS, EXCO, Daegu, Korea, October 22–25, 2006.

Ashwell, G. J.

Bravo, J.

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7, 89–95 (2007).
[CrossRef]

Chan, C. C.

K. M. Tan, C. C. Chan, L. Mohanty, and C. Meng Tay, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Ciaurriz, Z.

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B 96, 165–172(2003).
[CrossRef]

Corres, J. M.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. Nanotechnol. 7, 394–400 (2008).
[CrossRef]

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7, 89–95 (2007).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” IEEE J. Lightwave Technol. 24, 4329–4336 (2006).
[CrossRef]

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Enhanced sensitivity in humidity sensors based on long period fiber gratings,” presented at IEEE SENSORS, EXCO, Daegu, Korea, October 22–25, 2006.

Du, H.

Z. H. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92, 044105 (2008).
[CrossRef]

Erdogan, T.

Fanguy, J. C.

Ferreira, L. A.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

Giaccari, P.

Goicoechea, J.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

Grattan, K. T. V.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–155 (2005).
[CrossRef]

He, Z. H.

Z. H. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92, 044105 (2008).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir–Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002).
[CrossRef]

Konstantaki, M.

Kronenberg, P.

Kronenbery, P.

Lade, R.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–155 (2005).
[CrossRef]

Lee, K. J.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Li, Y.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Liao, Y.

L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “A relative humidity sensor using a hydrogel-coated long period grating,” Meas. Sci. Technol. 18, 3131–3134 (2007).
[CrossRef]

Limberger, H. G.

Liu, B.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Madamopoulos, N.

Magnusson, R.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Mao, X.

L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “A relative humidity sensor using a hydrogel-coated long period grating,” Meas. Sci. Technol. 18, 3131–3134 (2007).
[CrossRef]

Matias, I. R.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. Nanotechnol. 7, 394–400 (2008).
[CrossRef]

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7, 89–95 (2007).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” IEEE J. Lightwave Technol. 24, 4329–4336 (2006).
[CrossRef]

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B 96, 165–172(2003).
[CrossRef]

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Enhanced sensitivity in humidity sensors based on long period fiber gratings,” presented at IEEE SENSORS, EXCO, Daegu, Korea, October 22–25, 2006.

Meng Tay, C.

K. M. Tan, C. C. Chan, L. Mohanty, and C. Meng Tay, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Miao, Y. P.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Mohanty, L.

K. M. Tan, C. C. Chan, L. Mohanty, and C. Meng Tay, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Morisawa, M.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Muto, S.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Oneca, M.

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B 96, 165–172(2003).
[CrossRef]

Parry, D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–155 (2005).
[CrossRef]

Pispas, S.

Pissadakis, S.

Powell, B. D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–155 (2005).
[CrossRef]

Priambodo, P. S.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Rastogi, P. K.

Rees, N. D.

Santos, J. L.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

Soni, K.

Sun, H.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Sun, T.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–155 (2005).
[CrossRef]

Suzuki, O.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Tan, K. M.

K. M. Tan, C. C. Chan, L. Mohanty, and C. Meng Tay, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Tao, S.

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir–Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002).
[CrossRef]

Tu, D.

L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “A relative humidity sensor using a hydrogel-coated long period grating,” Meas. Sci. Technol. 18, 3131–3134 (2007).
[CrossRef]

Vainos, N. A.

Viegas, D.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

Villar, I.

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. Nanotechnol. 7, 394–400 (2008).
[CrossRef]

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Enhanced sensitivity in humidity sensors based on long period fiber gratings,” presented at IEEE SENSORS, EXCO, Daegu, Korea, October 22–25, 2006.

Wang, L.

L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “A relative humidity sensor using a hydrogel-coated long period grating,” Meas. Sci. Technol. 18, 3131–3134 (2007).
[CrossRef]

Wawro, D.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Xu, L.

Yeo, T. L.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–155 (2005).
[CrossRef]

Zhang, H.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Zhang, M.

L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “A relative humidity sensor using a hydrogel-coated long period grating,” Meas. Sci. Technol. 18, 3131–3134 (2007).
[CrossRef]

Zhang, W.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Zhao, Q.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Zhou, H.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

Zhu, Y.

Z. H. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92, 044105 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Z. H. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92, 044105 (2008).
[CrossRef]

IEEE J. Lightwave Technol.

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” IEEE J. Lightwave Technol. 24, 4329–4336 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. Zhou, H. Sun, W. Zhang, and Q. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating coated with polyvinyl alcohol film,” IEEE Photon. Technol. Lett. 21, 441–443 (2009).
[CrossRef]

IEEE Sens. J.

I. R. Matias, F. J. Arregui, J. M. Corres, and J. Bravo, “Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings,” IEEE Sens. J. 7, 89–95 (2007).
[CrossRef]

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

IEEE Trans. Nanotechnol.

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. Nanotechnol. 7, 394–400 (2008).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “A relative humidity sensor using a hydrogel-coated long period grating,” Meas. Sci. Technol. 18, 3131–3134 (2007).
[CrossRef]

Opt. Lett.

Sens. Actuators B

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–155 (2005).
[CrossRef]

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matias, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B 96, 165–172(2003).
[CrossRef]

K. M. Tan, C. C. Chan, L. Mohanty, and C. Meng Tay, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Other

J. M. Corres, I. Villar, I. R. Matias, and F. J. Arregui, “Enhanced sensitivity in humidity sensors based on long period fiber gratings,” presented at IEEE SENSORS, EXCO, Daegu, Korea, October 22–25, 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Microscope photograph of the coated-fiber cross-section.

Fig. 2.
Fig. 2.

Experimental setup of RH sensing test.

Fig. 3.
Fig. 3.

Grating spectra of the grating before and after coating.

Fig. 4.
Fig. 4.

Spectral response of the LPG sensor coated with agarose gel for different RH.

Fig. 5.
Fig. 5.

Transmission variations under different humidity: (a) relationship between RH and resonance wavelength; (b) relationship between lower RH and transmission; and (c) relationship between high RH and transmission.

Fig. 6.
Fig. 6.

Response of coupling coefficient κ to various RH.

Tables (1)

Tables Icon

Table 1. Mode Field Distribution of Core Mode LP01 and Cladding Mode LP11 with Different RH Values

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ res = ( n co n cl ) Λ ,
κ = π ( n co n cl ) λ res ,
t ( λ res ) = 1 sin 2 ( κ L ) ,

Metrics