Abstract

The 50-year life span of Applied Optics covers also approximately the time I have been engaged in optics. I started in 1962 [1] with the Institute for Optics and Spectroscopy, which was one of several Academy Institutes (mission statement: “theoria cum praxi,” G. Leibniz) located in Berlin-Adlershof on the area of the first airfield in Berlin dating back to the beginning of the 20th century.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The political situation was still dominated by the construction of the wall five months before. The rage of the workforce about the wall was enormous, because after the war it was not uncommon that a few scientists from West Berlin would be working in the academy institutes, which meant access to the developments in the world. Even after the wall had been built, one scientist was allowed to finish his Ph.D. thesis. Compared with the GDR as a whole, the oppression through the party was relatively moderate in East Berlin, so the loss of the contact to the life possible in West Berlin was for the Berliner colleagues a tremendous shock. One indication for the special conditions with the academy was the free access to Applied Optics and other journals from the west.
  2. G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077–1084 (1967).
    [CrossRef]
  3. J. Schwider, G. Schulz, R. Riekher, and G. Minkwitz, “Ein Interferenzverfahren zur Absolutprüfung von Planflächennormalen I,” Opt. Acta 13, 103–119 (1966).
  4. J. Schwider, “Informationssteigerung in der Vielstrahlinterferometrie,” Opt. Acta 15, 351–372 (1968).
    [CrossRef]
  5. G. Schulz and J. Schwider, “Interferometric testing of smooth surfaces,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1976), Vol. XIII, pp. 93–137.
  6. The subject of aspherics was classified because of its economic relevance. Therefore, publications on aspheric testing were possible only in a concealed manner [7].
  7. J. Schwider and R. Burow, “Testing of aspherics by means of rotational-symmetric synthetic holograms,” Opt. Appl. 6, 83–88 (1976).
  8. J. Schwider and R. Burow, “The use of rotational-symmetric holograms in optical testing,” in Proceedings of the Tenth Conference of the International Commission for Optics (Palacký University, 1976), pp. 471–485.
  9. J. Schwider, “Interferometrische Messung der Amplitudenpunktbildfunktion und der Varianz von Wellenflächen,” Opt. Acta 23, 115–127 (1976).
  10. At first sight, it is surprising that the phase shall be measured by changing the (arbitrary reference) phase, but the technique is a special type of a heterodyne interferometry only.
  11. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
    [CrossRef]
  12. A 64×64 photodiode array of an English company had been ordered, but it turned out that the array had a shunt fault. A damage claim could not be placed because of the Cold War circumstances, which meant we had to use a self-made hybrid array.
  13. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, and R. Spolaczyk, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983).
    [CrossRef]
  14. J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1990), Vol. XXVIII, pp. 271–359.
  15. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, and R. Spolaczyk, “Homogeneity testing by phase sampling interferometry,” Appl. Opt. 24, 3059–3061 (1985).
    [CrossRef]
  16. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, and R. Spolaczyk, “Semiconductor wafer and technical flat planeness testing interferometer,” Appl. Opt. 25, 1117–1121 (1986).
    [CrossRef]
  17. After the seclusion in East Berlin, it has been a great experience to work in an open environment with generous support by the scientific founding organizations, which allowed for free access to international conferences and colleagues working in related fields.
  18. E. Gluch, H. Kobolla, K. Zürl, N. Streibl, and J. Schwider, “Demonstration for an optoelectronic switching network,” J. Mod. Opt 40, 1857–1869 (1993).
    [CrossRef]
  19. J. Schwider, and O. Falkenstorfer, “Twyman-Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975 (1995).
    [CrossRef]
  20. H. Sickinger, J. Schwider, and B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of micro-lenses,” Optik 110, 239–240 (1999).
  21. Lens arrays using this technology are available; see www.suss-microoptics.com .
  22. The change in the scientific orientation in 1994 coincided with the appointment of G. Leuchs as new chair holder for Optics.
  23. J. Pfund, N. Lindlein, and J. Schwider, “Dynamic range expansion of a Shack–Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett. 23, 995–997 (1998).
    [CrossRef]
  24. Other authors following this idea called it spectral interferometry and the idea is extensively used in OCT and technical applications.
  25. J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19, 995–997 (1994).
    [CrossRef]
  26. A. Pfoertner and J. Schwider, “Red-green-blue interferometer for the metrology of discontinuous structures,” Appl. Opt. 42, 667–673 (2003).
    [CrossRef]
  27. J. Schwider, “Verfahren und Anordnung zur Prüfung beliebiger Mantelflächen rotations-symmetrischer Festkörper mittels synthetischer Hologramme,” German patent DDR WP 106 769 (4Jan.1972).
  28. R. Schreiner, N. Lindlein, T. Dresel, J. Schwider, S. Brinkmann, and H. Mischo, “Testing acylindrical micro-lenses at grazing incidence,” Optik 111, 397–406(2000).
  29. T. Dresel, S. Brinkmann, R. Schreiner, and J. Schwider, “Testing of rod objects by grazing incidence interferometry: theory,” J. Opt. Soc. Am. A 15, 2921–2928 (1998).
    [CrossRef]
  30. S. Brinkmann, T. Dresel, R. Schreiner, and J. Schwider, “Testing of rod objects by grazing-incidence interferometry: experiment,” Appl. Opt. 38, 121–125 (1999).
    [CrossRef]
  31. J. Lamprecht, N. Lindlein, and J. Schwider, “Characterization of cylindrical micro-lenses in transmitted light and with grazing incidence interferometry in reflected light,” Proc. SPIE 6188, 618816 (2006).
    [CrossRef]
  32. J. Schwider, “Interferometric tests for aspherics,” in Fabrication and Testing of Aspheres, J. S. Taylor, M. Piscotty, and A. Lindquist, eds. (Optical Society of America, 1999), pp. 103–114.
  33. G. S. Khan, K. Mantel, I. Harder, N. Lindlein, and J. Schwider, “Design considerations for the absolute testing approach of aspherics using combined diffractive optical elements,” Appl. Opt. 46, 7040–7048 (2007).
    [CrossRef]
  34. J. Schwider, “Fizeau-type multi-pass Shack-Hartmann-test,” Opt. Express 16, 362–372 (2008).
    [CrossRef]
  35. J. Schwider, “Multiple beam Fizeau interferometer with frequency comb illumination,” Opt. Commun. 282, 3308–3324 (2009).
    [CrossRef]
  36. I. Harder, G. Leuchs, K. Mantel, and J. Schwider, “Adaptive frequency comb illumination for interferometry,” Appl. Opt. 50, 4942–4956 (2011).
    [CrossRef]
  37. V. Nercissian, I. Harder, K. Mantel, A. Berger, G. Leuchs, N. Lindlein, and J. Schwider, “Diffractive simultaneous bidirectional shearing interferometry using tailored spatially coherent light,” Appl. Opt. 50, 571–578 (2011).
    [CrossRef]
  38. Further information can be obtained from: ( http://www.optik.uni-erlangen.de/odem/js_guestbook/index.html ).

2011

2009

J. Schwider, “Multiple beam Fizeau interferometer with frequency comb illumination,” Opt. Commun. 282, 3308–3324 (2009).
[CrossRef]

2008

2007

2006

J. Lamprecht, N. Lindlein, and J. Schwider, “Characterization of cylindrical micro-lenses in transmitted light and with grazing incidence interferometry in reflected light,” Proc. SPIE 6188, 618816 (2006).
[CrossRef]

2003

2000

R. Schreiner, N. Lindlein, T. Dresel, J. Schwider, S. Brinkmann, and H. Mischo, “Testing acylindrical micro-lenses at grazing incidence,” Optik 111, 397–406(2000).

1999

S. Brinkmann, T. Dresel, R. Schreiner, and J. Schwider, “Testing of rod objects by grazing-incidence interferometry: experiment,” Appl. Opt. 38, 121–125 (1999).
[CrossRef]

H. Sickinger, J. Schwider, and B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of micro-lenses,” Optik 110, 239–240 (1999).

1998

1995

J. Schwider, and O. Falkenstorfer, “Twyman-Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975 (1995).
[CrossRef]

1994

1993

E. Gluch, H. Kobolla, K. Zürl, N. Streibl, and J. Schwider, “Demonstration for an optoelectronic switching network,” J. Mod. Opt 40, 1857–1869 (1993).
[CrossRef]

1986

1985

1983

1976

J. Schwider and R. Burow, “Testing of aspherics by means of rotational-symmetric synthetic holograms,” Opt. Appl. 6, 83–88 (1976).

J. Schwider, “Interferometrische Messung der Amplitudenpunktbildfunktion und der Varianz von Wellenflächen,” Opt. Acta 23, 115–127 (1976).

1974

1968

J. Schwider, “Informationssteigerung in der Vielstrahlinterferometrie,” Opt. Acta 15, 351–372 (1968).
[CrossRef]

1967

1966

J. Schwider, G. Schulz, R. Riekher, and G. Minkwitz, “Ein Interferenzverfahren zur Absolutprüfung von Planflächennormalen I,” Opt. Acta 13, 103–119 (1966).

Berger, A.

Brangaccio, D. J.

Brinkmann, S.

Bruning, J. H.

Burow, R.

Dresel, T.

Elssner, K.-E.

Falkenstorfer, O.

J. Schwider, and O. Falkenstorfer, “Twyman-Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975 (1995).
[CrossRef]

Gallagher, J. E.

Gluch, E.

E. Gluch, H. Kobolla, K. Zürl, N. Streibl, and J. Schwider, “Demonstration for an optoelectronic switching network,” J. Mod. Opt 40, 1857–1869 (1993).
[CrossRef]

Grzanna, J.

Harder, I.

Herriott, D. R.

Khan, G. S.

Kobolla, H.

E. Gluch, H. Kobolla, K. Zürl, N. Streibl, and J. Schwider, “Demonstration for an optoelectronic switching network,” J. Mod. Opt 40, 1857–1869 (1993).
[CrossRef]

Lamprecht, J.

J. Lamprecht, N. Lindlein, and J. Schwider, “Characterization of cylindrical micro-lenses in transmitted light and with grazing incidence interferometry in reflected light,” Proc. SPIE 6188, 618816 (2006).
[CrossRef]

Leuchs, G.

Lindlein, N.

Mantel, K.

Manzke, B.

H. Sickinger, J. Schwider, and B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of micro-lenses,” Optik 110, 239–240 (1999).

Minkwitz, G.

J. Schwider, G. Schulz, R. Riekher, and G. Minkwitz, “Ein Interferenzverfahren zur Absolutprüfung von Planflächennormalen I,” Opt. Acta 13, 103–119 (1966).

Mischo, H.

R. Schreiner, N. Lindlein, T. Dresel, J. Schwider, S. Brinkmann, and H. Mischo, “Testing acylindrical micro-lenses at grazing incidence,” Optik 111, 397–406(2000).

Nercissian, V.

Pfoertner, A.

Pfund, J.

Riekher, R.

J. Schwider, G. Schulz, R. Riekher, and G. Minkwitz, “Ein Interferenzverfahren zur Absolutprüfung von Planflächennormalen I,” Opt. Acta 13, 103–119 (1966).

Rosenfeld, D. P.

Schreiner, R.

Schulz, G.

G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077–1084 (1967).
[CrossRef]

J. Schwider, G. Schulz, R. Riekher, and G. Minkwitz, “Ein Interferenzverfahren zur Absolutprüfung von Planflächennormalen I,” Opt. Acta 13, 103–119 (1966).

G. Schulz and J. Schwider, “Interferometric testing of smooth surfaces,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1976), Vol. XIII, pp. 93–137.

Schwider, J.

I. Harder, G. Leuchs, K. Mantel, and J. Schwider, “Adaptive frequency comb illumination for interferometry,” Appl. Opt. 50, 4942–4956 (2011).
[CrossRef]

V. Nercissian, I. Harder, K. Mantel, A. Berger, G. Leuchs, N. Lindlein, and J. Schwider, “Diffractive simultaneous bidirectional shearing interferometry using tailored spatially coherent light,” Appl. Opt. 50, 571–578 (2011).
[CrossRef]

J. Schwider, “Multiple beam Fizeau interferometer with frequency comb illumination,” Opt. Commun. 282, 3308–3324 (2009).
[CrossRef]

J. Schwider, “Fizeau-type multi-pass Shack-Hartmann-test,” Opt. Express 16, 362–372 (2008).
[CrossRef]

G. S. Khan, K. Mantel, I. Harder, N. Lindlein, and J. Schwider, “Design considerations for the absolute testing approach of aspherics using combined diffractive optical elements,” Appl. Opt. 46, 7040–7048 (2007).
[CrossRef]

J. Lamprecht, N. Lindlein, and J. Schwider, “Characterization of cylindrical micro-lenses in transmitted light and with grazing incidence interferometry in reflected light,” Proc. SPIE 6188, 618816 (2006).
[CrossRef]

A. Pfoertner and J. Schwider, “Red-green-blue interferometer for the metrology of discontinuous structures,” Appl. Opt. 42, 667–673 (2003).
[CrossRef]

R. Schreiner, N. Lindlein, T. Dresel, J. Schwider, S. Brinkmann, and H. Mischo, “Testing acylindrical micro-lenses at grazing incidence,” Optik 111, 397–406(2000).

S. Brinkmann, T. Dresel, R. Schreiner, and J. Schwider, “Testing of rod objects by grazing-incidence interferometry: experiment,” Appl. Opt. 38, 121–125 (1999).
[CrossRef]

H. Sickinger, J. Schwider, and B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of micro-lenses,” Optik 110, 239–240 (1999).

J. Pfund, N. Lindlein, and J. Schwider, “Dynamic range expansion of a Shack–Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett. 23, 995–997 (1998).
[CrossRef]

T. Dresel, S. Brinkmann, R. Schreiner, and J. Schwider, “Testing of rod objects by grazing incidence interferometry: theory,” J. Opt. Soc. Am. A 15, 2921–2928 (1998).
[CrossRef]

J. Schwider, and O. Falkenstorfer, “Twyman-Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975 (1995).
[CrossRef]

J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19, 995–997 (1994).
[CrossRef]

E. Gluch, H. Kobolla, K. Zürl, N. Streibl, and J. Schwider, “Demonstration for an optoelectronic switching network,” J. Mod. Opt 40, 1857–1869 (1993).
[CrossRef]

J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, and R. Spolaczyk, “Semiconductor wafer and technical flat planeness testing interferometer,” Appl. Opt. 25, 1117–1121 (1986).
[CrossRef]

J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, and R. Spolaczyk, “Homogeneity testing by phase sampling interferometry,” Appl. Opt. 24, 3059–3061 (1985).
[CrossRef]

J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, and R. Spolaczyk, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983).
[CrossRef]

J. Schwider and R. Burow, “Testing of aspherics by means of rotational-symmetric synthetic holograms,” Opt. Appl. 6, 83–88 (1976).

J. Schwider, “Interferometrische Messung der Amplitudenpunktbildfunktion und der Varianz von Wellenflächen,” Opt. Acta 23, 115–127 (1976).

J. Schwider, “Informationssteigerung in der Vielstrahlinterferometrie,” Opt. Acta 15, 351–372 (1968).
[CrossRef]

G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077–1084 (1967).
[CrossRef]

J. Schwider, G. Schulz, R. Riekher, and G. Minkwitz, “Ein Interferenzverfahren zur Absolutprüfung von Planflächennormalen I,” Opt. Acta 13, 103–119 (1966).

G. Schulz and J. Schwider, “Interferometric testing of smooth surfaces,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1976), Vol. XIII, pp. 93–137.

J. Schwider and R. Burow, “The use of rotational-symmetric holograms in optical testing,” in Proceedings of the Tenth Conference of the International Commission for Optics (Palacký University, 1976), pp. 471–485.

J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1990), Vol. XXVIII, pp. 271–359.

J. Schwider, “Interferometric tests for aspherics,” in Fabrication and Testing of Aspheres, J. S. Taylor, M. Piscotty, and A. Lindquist, eds. (Optical Society of America, 1999), pp. 103–114.

J. Schwider, “Verfahren und Anordnung zur Prüfung beliebiger Mantelflächen rotations-symmetrischer Festkörper mittels synthetischer Hologramme,” German patent DDR WP 106 769 (4Jan.1972).

Sickinger, H.

H. Sickinger, J. Schwider, and B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of micro-lenses,” Optik 110, 239–240 (1999).

Spolaczyk, R.

Streibl, N.

E. Gluch, H. Kobolla, K. Zürl, N. Streibl, and J. Schwider, “Demonstration for an optoelectronic switching network,” J. Mod. Opt 40, 1857–1869 (1993).
[CrossRef]

White, A. D.

Zhou, L.

Zürl, K.

E. Gluch, H. Kobolla, K. Zürl, N. Streibl, and J. Schwider, “Demonstration for an optoelectronic switching network,” J. Mod. Opt 40, 1857–1869 (1993).
[CrossRef]

Appl. Opt.

G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077–1084 (1967).
[CrossRef]

J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
[CrossRef]

J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, and R. Spolaczyk, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983).
[CrossRef]

J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, and R. Spolaczyk, “Homogeneity testing by phase sampling interferometry,” Appl. Opt. 24, 3059–3061 (1985).
[CrossRef]

J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, and R. Spolaczyk, “Semiconductor wafer and technical flat planeness testing interferometer,” Appl. Opt. 25, 1117–1121 (1986).
[CrossRef]

A. Pfoertner and J. Schwider, “Red-green-blue interferometer for the metrology of discontinuous structures,” Appl. Opt. 42, 667–673 (2003).
[CrossRef]

S. Brinkmann, T. Dresel, R. Schreiner, and J. Schwider, “Testing of rod objects by grazing-incidence interferometry: experiment,” Appl. Opt. 38, 121–125 (1999).
[CrossRef]

G. S. Khan, K. Mantel, I. Harder, N. Lindlein, and J. Schwider, “Design considerations for the absolute testing approach of aspherics using combined diffractive optical elements,” Appl. Opt. 46, 7040–7048 (2007).
[CrossRef]

I. Harder, G. Leuchs, K. Mantel, and J. Schwider, “Adaptive frequency comb illumination for interferometry,” Appl. Opt. 50, 4942–4956 (2011).
[CrossRef]

V. Nercissian, I. Harder, K. Mantel, A. Berger, G. Leuchs, N. Lindlein, and J. Schwider, “Diffractive simultaneous bidirectional shearing interferometry using tailored spatially coherent light,” Appl. Opt. 50, 571–578 (2011).
[CrossRef]

J. Mod. Opt

E. Gluch, H. Kobolla, K. Zürl, N. Streibl, and J. Schwider, “Demonstration for an optoelectronic switching network,” J. Mod. Opt 40, 1857–1869 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Acta

J. Schwider, G. Schulz, R. Riekher, and G. Minkwitz, “Ein Interferenzverfahren zur Absolutprüfung von Planflächennormalen I,” Opt. Acta 13, 103–119 (1966).

J. Schwider, “Informationssteigerung in der Vielstrahlinterferometrie,” Opt. Acta 15, 351–372 (1968).
[CrossRef]

J. Schwider, “Interferometrische Messung der Amplitudenpunktbildfunktion und der Varianz von Wellenflächen,” Opt. Acta 23, 115–127 (1976).

Opt. Appl.

J. Schwider and R. Burow, “Testing of aspherics by means of rotational-symmetric synthetic holograms,” Opt. Appl. 6, 83–88 (1976).

Opt. Commun.

J. Schwider, “Multiple beam Fizeau interferometer with frequency comb illumination,” Opt. Commun. 282, 3308–3324 (2009).
[CrossRef]

Opt. Eng.

J. Schwider, and O. Falkenstorfer, “Twyman-Green interferometer for testing microspheres,” Opt. Eng. 34, 2972–2975 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

R. Schreiner, N. Lindlein, T. Dresel, J. Schwider, S. Brinkmann, and H. Mischo, “Testing acylindrical micro-lenses at grazing incidence,” Optik 111, 397–406(2000).

H. Sickinger, J. Schwider, and B. Manzke, “Fiber based Mach–Zehnder interferometer for measuring wave aberrations of micro-lenses,” Optik 110, 239–240 (1999).

Proc. SPIE

J. Lamprecht, N. Lindlein, and J. Schwider, “Characterization of cylindrical micro-lenses in transmitted light and with grazing incidence interferometry in reflected light,” Proc. SPIE 6188, 618816 (2006).
[CrossRef]

Other

J. Schwider, “Interferometric tests for aspherics,” in Fabrication and Testing of Aspheres, J. S. Taylor, M. Piscotty, and A. Lindquist, eds. (Optical Society of America, 1999), pp. 103–114.

Further information can be obtained from: ( http://www.optik.uni-erlangen.de/odem/js_guestbook/index.html ).

Other authors following this idea called it spectral interferometry and the idea is extensively used in OCT and technical applications.

After the seclusion in East Berlin, it has been a great experience to work in an open environment with generous support by the scientific founding organizations, which allowed for free access to international conferences and colleagues working in related fields.

The political situation was still dominated by the construction of the wall five months before. The rage of the workforce about the wall was enormous, because after the war it was not uncommon that a few scientists from West Berlin would be working in the academy institutes, which meant access to the developments in the world. Even after the wall had been built, one scientist was allowed to finish his Ph.D. thesis. Compared with the GDR as a whole, the oppression through the party was relatively moderate in East Berlin, so the loss of the contact to the life possible in West Berlin was for the Berliner colleagues a tremendous shock. One indication for the special conditions with the academy was the free access to Applied Optics and other journals from the west.

J. Schwider, “Verfahren und Anordnung zur Prüfung beliebiger Mantelflächen rotations-symmetrischer Festkörper mittels synthetischer Hologramme,” German patent DDR WP 106 769 (4Jan.1972).

Lens arrays using this technology are available; see www.suss-microoptics.com .

The change in the scientific orientation in 1994 coincided with the appointment of G. Leuchs as new chair holder for Optics.

J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1990), Vol. XXVIII, pp. 271–359.

A 64×64 photodiode array of an English company had been ordered, but it turned out that the array had a shunt fault. A damage claim could not be placed because of the Cold War circumstances, which meant we had to use a self-made hybrid array.

J. Schwider and R. Burow, “The use of rotational-symmetric holograms in optical testing,” in Proceedings of the Tenth Conference of the International Commission for Optics (Palacký University, 1976), pp. 471–485.

At first sight, it is surprising that the phase shall be measured by changing the (arbitrary reference) phase, but the technique is a special type of a heterodyne interferometry only.

G. Schulz and J. Schwider, “Interferometric testing of smooth surfaces,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1976), Vol. XIII, pp. 93–137.

The subject of aspherics was classified because of its economic relevance. Therefore, publications on aspheric testing were possible only in a concealed manner [7].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Measurement of planeness. Left: two-beam fringe pattern. Center: processed equidensities [2,3]. Right: enhanced multiple beam fringes with λ / 50 contour fringes [4,5].

Fig. 2.
Fig. 2.

Test of aspherics using rotational symmetric diffractive masters (RSH) [79] and a hologram compensating the RSH substrate deviations. Left above: scheme of the test interferometer in transmitted light. Left below: interferograms of two aspherical samples with typical deviations from the ideal form. Right: pattern generator for rotational symmetric diffractive masters built between 1969 and 1972.

Fig. 3.
Fig. 3.

Phase shifting interferometry. Left above: intensity distribution scanned with a CCD-line camera. Left below: phase error produced by calibration error of phase shifter (scale value: λ / 256 ); please note the 2 Φ -dependence! Right: workgroup in the year 1981, after the completion of the phase shifting Twyman–Green Interferometer having been used for the study of systematic errors [13,14].

Fig. 4.
Fig. 4.

HOE–butterfly permutation (left) and DOE elements for beam deflection and beam shaping produced in our laboratories [18].

Fig. 5.
Fig. 5.

Interferometers for the characterization of microlenses in reflected and transmitted light. Left: Twyman–Green interferometer for the measurement of surface deviations from a sphere (partial coherent illumination!) [19]. Right: fiber-based Mach–Zehnder interferometer [20] for the determination of wave aberrations and the focal length of microlenses.

Fig. 6.
Fig. 6.

Fizeau interference microscope combined with spectral dispersion of the white light fringes [25]. A slit section of the surface image is dispersed and the absolute thickness of the Fizeau resonator is derived from the spectral fringe pattern. Right: a typical spectrogram is given together with a two-dimensional profile of a diffractive Fresnel lens.

Fig. 7.
Fig. 7.

Cylinder lens test in grazing incidence [2830] using DOEs as beam splitters. Left: scheme of the interferometer. Above right: deviation pattern in the coordinate system of the camera. Below right: surface deviations as rectified polynomial fit (coordinates of the microlens).

Fig. 8.
Fig. 8.

Cylinder lens test in transmitted light [31] using a DOE as reference and as transformer of the beam cross section. Left: scheme of the interferometer. Center: DOE together with transformed interferogram. Right: lens aberrations.

Fig. 9.
Fig. 9.

Above left: SHS-multipass Fizeau [34]. Above right: reflex selection scheme. Below left: wavefront (mod λ ) with a 30-time sensitivity enhancement approximately best adjustment. Below middle: wavefront after tilt subtraction. Below right: measured deviations as polynomial fit with Zernike degree 12, contour line distance λ / 120 .

Fig. 10.
Fig. 10.

Multiple-beam Fizeau interferometer with frequency comb illumination [35] generated through filtering a superluminescent continuum with a tunable FP filter. Please note the spatially incoherent coupling of the frequency comb to the Fizeau interferometer! Left: sum of the surface deviations of two plane surfaces coated with high reflecting dielectric films, enhancement factor 20 (contour line distance: λ / 100 ). Right: interference pattern showing fringes with λ / 40 -surface deviations from fringe to fringe.

Fig. 11.
Fig. 11.

Two beam Fizeau interferometer with frequency comb illumination [36] generated through FP-filtered light of a superluminescent diode. Below left: fringe pattern of an empty Fizeau resonator. Below right: fringe pattern of the Fizeau resonator containing a glass plate (typical configuration for homogeneity tests).

Fig. 12.
Fig. 12.

Simultaneous shearing interferometry [37] using phase Ronchi gratings as beam splitters with partially coherent illumination from a laser spot array on a rotating scatterer (scheme above). Below left: spot array of a Dammann grating. Below right: orthogonal shearing interferograms with first-order shear (above) and second-order shear (below).

Metrics