Abstract

Pattern-integrated interference (PII) is described as a logical progression starting from the primary precursors of interference and holography. PII produces, in a single-exposure step, a periodic interference pattern with preselected periods absent. These blocked periods, for example, can form the nonperiodic functional elements of a photonic-crystal device or the circuit elements in a periodic-layout-design semiconductor chip. Various possible system configurations for PII are presented and compared. Example PII-produced intensity patterns for a photonic-crystal microresonator filter and an optical switch are simulated and discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts (Printed for J. Johnson, 1807).
  2. W. Mao, Y. Zhong, J. Dong, and H. Wang, “Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams,” J. Opt. Soc. Am. B 22, 1085–1091(2005).
    [CrossRef]
  3. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
    [CrossRef]
  4. M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography (Wiley-VCH, 2009).
  5. J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008).
    [CrossRef]
  6. J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett. 33, 1434–1436 (2008).
    [CrossRef]
  7. J. L. Stay and T. K. Gaylord, “Conditions for primitive-lattice-vector-direction equal contrasts in four-beam-interference lithography,” Appl. Opt. 48, 4801–4813 (2009).
    [CrossRef]
  8. G. M. Burrow, “Pattern-integrated interference lithography: single-exposure formation of photonic crystal lattices with integrated functional elements,” Ph.D. thesis (Georgia Institute of Technology, 2012).
  9. G. M. Burrow and T. K. Gaylord, “Parametric constraints in multi-beam interference,” J. Microlithogr. Microfabr. Microsyst. 11, 043004 (2012).
    [CrossRef]
  10. G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nanoelectronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011).
    [CrossRef]
  11. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  12. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962).
    [CrossRef]
  13. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964).
    [CrossRef]
  14. R. B. Millington, A. G. Mayes, J. Blyth, and C. R. Lowe, “A hologram biosensor for proteases,” Sens. Actuators B 33, 55–59 (1996).
    [CrossRef]
  15. J. Wallace, “Optical data storage: 500 GByte volume-holographic disc can be written at Blu-ray speed,” Laser Focus World 47, 13–14 (2011).
  16. G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
    [CrossRef]
  17. G. M. Burrow and T. K. Gaylord, “Interference projection exposure system and method of using the same,” U.S. patent application 2012/0081687 (30September2010).
  18. M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano and microelectronics,” Opt. Express 20, 23643–23652 (2012).
    [CrossRef]
  19. L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE 5042, 1–14 (2003).
    [CrossRef]
  20. S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography—from periodic arrays to arbitrary patterns,” Microelectron. Eng. 41–42, 145–148 (1998).
    [CrossRef]
  21. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography,” J. Vac. Sci. Technol. B 16, 3392–3397 (1998).
    [CrossRef]
  22. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography for arbitrary patterns,” Proc. SPIE 3331, 214–224 (1998).
    [CrossRef]
  23. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124–126 (1999).
    [CrossRef]
  24. A. Frauenglass, S. Smolev, A. Biswas, and S. R. J. Brueck, “244 nm imaging interferometric lithography,” J. Vac. Sci. Technol. B 22, 3465–3469 (2004).
    [CrossRef]
  25. S. R. J. Brueck, “Optical and interferometric lithography—nanotechnology enablers,” Proc. IEEE 93, 1704–1721 (2005).
    [CrossRef]
  26. X. Chen, A. Frauenglass, and S. R. J. Brueck, “Interferometric lithography pattern delimited by a mask image,” Proc. SPIE 3331, 496–502 (1998).
    [CrossRef]
  27. J. T. Li, Y. K. Liu, X. S. Xie, P. Q. Zhang, B. Liang, L. Yan, J. Y. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. C. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express 16, 12899–12904 (2008).
    [CrossRef]
  28. P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113–116 (2011).
    [CrossRef]
  29. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  30. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    [CrossRef]
  31. H.-S. Lee, Y.-H. Kim, D. Han, and B. Lee, “Cross-talk noise analysis in hologram memory with hybrid multiplexing of the Hadamard phase code and wavelength,” J. Opt. Soc. Am. A 16, 563–567 (1999).
    [CrossRef]
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  33. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  34. N. H. Farhat, Advances in Holography (Dekker, 1976), Vol. 3.
  35. H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).
  36. G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask and methods of using and fabricating the same,” U.S. patent application 2012/0082943 (30September2010).
  37. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
    [CrossRef]
  38. S. Mookherjea, D. S. Cohen, and A. Yariv, “Nonlinear dispersion in a coupled-resonator optical waveguide,” Opt. Lett. 27, 933–935 (2002).
    [CrossRef]
  39. M. Soltani, A. Adibi, Y. Xu, and R. K. Lee, “Systematic design of single-mode coupled-resonator optical waveguides in photonic crystals,” Opt. Lett. 28, 1978–1980(2003).
    [CrossRef]
  40. K. Srinivasan, P. E. Barclay, and O. Painter, “Fabrication-tolerant high quality factor photonic crystal microcavities,” Opt. Express 12, 1458–1463 (2004).
    [CrossRef]
  41. P. E. Barclay, K. Srinivasan, and O. Fainter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
    [CrossRef]
  42. Y.-D. Wu, T.-T. Shih, and J.-J. Lee, “High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications,” Appl. Opt. 48, F24–F30 (2009).
    [CrossRef]
  43. P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
    [CrossRef]
  44. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
    [CrossRef]
  45. D. P. Peng, P. Hu, V. Tolani, T. Dam, J. Tyminski, and S. Slonaker, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
    [CrossRef]
  46. M. C. R. Leibovici and T. K. Gaylord, Optics Laboratory, Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia 30332-0250, USA are preparing a manuscript to be called “Pattern-integrated interference lithography: vector modeling of the single-exposure fabrication of photonic-crystal structures.”

2012 (3)

2011 (3)

G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nanoelectronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011).
[CrossRef]

J. Wallace, “Optical data storage: 500 GByte volume-holographic disc can be written at Blu-ray speed,” Laser Focus World 47, 13–14 (2011).

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113–116 (2011).
[CrossRef]

2010 (1)

D. P. Peng, P. Hu, V. Tolani, T. Dam, J. Tyminski, and S. Slonaker, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

2009 (2)

2008 (3)

2005 (4)

2004 (2)

A. Frauenglass, S. Smolev, A. Biswas, and S. R. J. Brueck, “244 nm imaging interferometric lithography,” J. Vac. Sci. Technol. B 22, 3465–3469 (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, and O. Painter, “Fabrication-tolerant high quality factor photonic crystal microcavities,” Opt. Express 12, 1458–1463 (2004).
[CrossRef]

2003 (2)

M. Soltani, A. Adibi, Y. Xu, and R. K. Lee, “Systematic design of single-mode coupled-resonator optical waveguides in photonic crystals,” Opt. Lett. 28, 1978–1980(2003).
[CrossRef]

L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE 5042, 1–14 (2003).
[CrossRef]

2002 (2)

2001 (1)

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

1999 (3)

1998 (4)

X. Chen, A. Frauenglass, and S. R. J. Brueck, “Interferometric lithography pattern delimited by a mask image,” Proc. SPIE 3331, 496–502 (1998).
[CrossRef]

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography—from periodic arrays to arbitrary patterns,” Microelectron. Eng. 41–42, 145–148 (1998).
[CrossRef]

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography,” J. Vac. Sci. Technol. B 16, 3392–3397 (1998).
[CrossRef]

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography for arbitrary patterns,” Proc. SPIE 3331, 214–224 (1998).
[CrossRef]

1996 (1)

R. B. Millington, A. G. Mayes, J. Blyth, and C. R. Lowe, “A hologram biosensor for proteases,” Sens. Actuators B 33, 55–59 (1996).
[CrossRef]

1995 (1)

1991 (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

1964 (1)

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Adibi, A.

Agio, M.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Barclay, P. E.

Barish, A.

L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE 5042, 1–14 (2003).
[CrossRef]

Bashaw, M. C.

Birner, A.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Biswas, A.

A. Frauenglass, S. Smolev, A. Biswas, and S. R. J. Brueck, “244 nm imaging interferometric lithography,” J. Vac. Sci. Technol. B 22, 3465–3469 (2004).
[CrossRef]

Blyth, J.

R. B. Millington, A. G. Mayes, J. Blyth, and C. R. Lowe, “A hologram biosensor for proteases,” Sens. Actuators B 33, 55–59 (1996).
[CrossRef]

Brueck, S. R. J.

S. R. J. Brueck, “Optical and interferometric lithography—nanotechnology enablers,” Proc. IEEE 93, 1704–1721 (2005).
[CrossRef]

A. Frauenglass, S. Smolev, A. Biswas, and S. R. J. Brueck, “244 nm imaging interferometric lithography,” J. Vac. Sci. Technol. B 22, 3465–3469 (2004).
[CrossRef]

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124–126 (1999).
[CrossRef]

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography,” J. Vac. Sci. Technol. B 16, 3392–3397 (1998).
[CrossRef]

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography for arbitrary patterns,” Proc. SPIE 3331, 214–224 (1998).
[CrossRef]

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography—from periodic arrays to arbitrary patterns,” Microelectron. Eng. 41–42, 145–148 (1998).
[CrossRef]

X. Chen, A. Frauenglass, and S. R. J. Brueck, “Interferometric lithography pattern delimited by a mask image,” Proc. SPIE 3331, 496–502 (1998).
[CrossRef]

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Burrow, G. M.

G. M. Burrow and T. K. Gaylord, “Parametric constraints in multi-beam interference,” J. Microlithogr. Microfabr. Microsyst. 11, 043004 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nanoelectronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011).
[CrossRef]

G. M. Burrow, “Pattern-integrated interference lithography: single-exposure formation of photonic crystal lattices with integrated functional elements,” Ph.D. thesis (Georgia Institute of Technology, 2012).

G. M. Burrow and T. K. Gaylord, “Interference projection exposure system and method of using the same,” U.S. patent application 2012/0081687 (30September2010).

G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask and methods of using and fabricating the same,” U.S. patent application 2012/0082943 (30September2010).

Cai, L. Z.

Caulfield, H. J.

H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).

Chen, X.

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124–126 (1999).
[CrossRef]

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography—from periodic arrays to arbitrary patterns,” Microelectron. Eng. 41–42, 145–148 (1998).
[CrossRef]

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography,” J. Vac. Sci. Technol. B 16, 3392–3397 (1998).
[CrossRef]

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography for arbitrary patterns,” Proc. SPIE 3331, 214–224 (1998).
[CrossRef]

X. Chen, A. Frauenglass, and S. R. J. Brueck, “Interferometric lithography pattern delimited by a mask image,” Proc. SPIE 3331, 496–502 (1998).
[CrossRef]

Cohen, D. S.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Culp, J.

L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE 5042, 1–14 (2003).
[CrossRef]

Dam, T.

D. P. Peng, P. Hu, V. Tolani, T. Dam, J. Tyminski, and S. Slonaker, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

Denz, C.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Dong, J.

Fainter, O.

Farhat, N. H.

N. H. Farhat, Advances in Holography (Dekker, 1976), Vol. 3.

Fonseca, C.

L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE 5042, 1–14 (2003).
[CrossRef]

Frauenglass, A.

A. Frauenglass, S. Smolev, A. Biswas, and S. R. J. Brueck, “244 nm imaging interferometric lithography,” J. Vac. Sci. Technol. B 22, 3465–3469 (2004).
[CrossRef]

X. Chen, A. Frauenglass, and S. R. J. Brueck, “Interferometric lithography pattern delimited by a mask image,” Proc. SPIE 3331, 496–502 (1998).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Gaylord, T. K.

G. M. Burrow and T. K. Gaylord, “Parametric constraints in multi-beam interference,” J. Microlithogr. Microfabr. Microsyst. 11, 043004 (2012).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nanoelectronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Conditions for primitive-lattice-vector-direction equal contrasts in four-beam-interference lithography,” Appl. Opt. 48, 4801–4813 (2009).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett. 33, 1434–1436 (2008).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, Optics Laboratory, Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia 30332-0250, USA are preparing a manuscript to be called “Pattern-integrated interference lithography: vector modeling of the single-exposure fabrication of photonic-crystal structures.”

G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask and methods of using and fabricating the same,” U.S. patent application 2012/0082943 (30September2010).

G. M. Burrow and T. K. Gaylord, “Interference projection exposure system and method of using the same,” U.S. patent application 2012/0081687 (30September2010).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Gosele, U.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Guan, Y. F.

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113–116 (2011).
[CrossRef]

Han, D.

Heanue, J. F.

Hesselink, L.

Hu, P.

D. P. Peng, P. Hu, V. Tolani, T. Dam, J. Tyminski, and S. Slonaker, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

Jacobs, D.

Kim, Y.-H.

Kira, G.

Kramper, P.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Kuramochi, E.

Kurizki, G.

Lee, B.

Lee, H.-S.

Lee, J.-J.

Lee, R. K.

Leibovici, M. C. R.

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, Optics Laboratory, Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia 30332-0250, USA are preparing a manuscript to be called “Pattern-integrated interference lithography: vector modeling of the single-exposure fabrication of photonic-crystal structures.”

Leith, E. N.

Li, J. T.

Liang, B.

Liebmann, L.

L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE 5042, 1–14 (2003).
[CrossRef]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Liu, Y. K.

Lowe, C. R.

R. B. Millington, A. G. Mayes, J. Blyth, and C. R. Lowe, “A hologram biosensor for proteases,” Sens. Actuators B 33, 55–59 (1996).
[CrossRef]

Maldovan, M.

M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography (Wiley-VCH, 2009).

Mao, W.

Mayes, A. G.

R. B. Millington, A. G. Mayes, J. Blyth, and C. R. Lowe, “A hologram biosensor for proteases,” Sens. Actuators B 33, 55–59 (1996).
[CrossRef]

Millington, R. B.

R. B. Millington, A. G. Mayes, J. Blyth, and C. R. Lowe, “A hologram biosensor for proteases,” Sens. Actuators B 33, 55–59 (1996).
[CrossRef]

Mitsugi, S.

Mlynek, J.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Mookherjea, S.

Muller, F.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Northrop, G.

L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE 5042, 1–14 (2003).
[CrossRef]

Notomi, M.

Painter, O.

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Peng, D. P.

D. P. Peng, P. Hu, V. Tolani, T. Dam, J. Tyminski, and S. Slonaker, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Sandoghdar, V.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Scherer, A.

Shih, T.-T.

Shinya, A.

Sigal, L.

L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE 5042, 1–14 (2003).
[CrossRef]

Slonaker, S.

D. P. Peng, P. Hu, V. Tolani, T. Dam, J. Tyminski, and S. Slonaker, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

Smolev, S.

A. Frauenglass, S. Smolev, A. Biswas, and S. R. J. Brueck, “244 nm imaging interferometric lithography,” J. Vac. Sci. Technol. B 22, 3465–3469 (2004).
[CrossRef]

Soltani, M.

Soukoulis, C. M.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Srinivasan, K.

Stay, J. L.

Tanabe, T.

Thomas, E. L.

M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography (Wiley-VCH, 2009).

Tolani, V.

D. P. Peng, P. Hu, V. Tolani, T. Dam, J. Tyminski, and S. Slonaker, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Tyminski, J.

D. P. Peng, P. Hu, V. Tolani, T. Dam, J. Tyminski, and S. Slonaker, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

Upatnieks, J.

Wallace, J.

J. Wallace, “Optical data storage: 500 GByte volume-holographic disc can be written at Blu-ray speed,” Laser Focus World 47, 13–14 (2011).

Wang, H.

Wang, Y. R.

Wong, K. S.

Wu, Y.-D.

Xie, X. S.

Xu, Y.

Yan, L.

Yang, X. L.

Yariv, A.

Young, T.

T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts (Printed for J. Johnson, 1807).

Zaidi, S. H.

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography—from periodic arrays to arbitrary patterns,” Microelectron. Eng. 41–42, 145–148 (1998).
[CrossRef]

Zhang, P. Q.

Zhang, Z.

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography—from periodic arrays to arbitrary patterns,” Microelectron. Eng. 41–42, 145–148 (1998).
[CrossRef]

Zhong, Y.

Zhong, Y. C.

Zhou, J. Y.

Appl. Opt. (5)

Appl. Phys. B (1)

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113–116 (2011).
[CrossRef]

J. Microlithogr. Microfabr. Microsyst. (1)

G. M. Burrow and T. K. Gaylord, “Parametric constraints in multi-beam interference,” J. Microlithogr. Microfabr. Microsyst. 11, 043004 (2012).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (2)

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography,” J. Vac. Sci. Technol. B 16, 3392–3397 (1998).
[CrossRef]

A. Frauenglass, S. Smolev, A. Biswas, and S. R. J. Brueck, “244 nm imaging interferometric lithography,” J. Vac. Sci. Technol. B 22, 3465–3469 (2004).
[CrossRef]

Laser Focus World (1)

J. Wallace, “Optical data storage: 500 GByte volume-holographic disc can be written at Blu-ray speed,” Laser Focus World 47, 13–14 (2011).

Microelectron. Eng. (1)

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography—from periodic arrays to arbitrary patterns,” Microelectron. Eng. 41–42, 145–148 (1998).
[CrossRef]

Micromachines (1)

G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nanoelectronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Opt. Commun. (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. B (1)

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Muller, U. Gosele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Proc. IEEE (1)

S. R. J. Brueck, “Optical and interferometric lithography—nanotechnology enablers,” Proc. IEEE 93, 1704–1721 (2005).
[CrossRef]

Proc. SPIE (4)

X. Chen, A. Frauenglass, and S. R. J. Brueck, “Interferometric lithography pattern delimited by a mask image,” Proc. SPIE 3331, 496–502 (1998).
[CrossRef]

D. P. Peng, P. Hu, V. Tolani, T. Dam, J. Tyminski, and S. Slonaker, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography for arbitrary patterns,” Proc. SPIE 3331, 214–224 (1998).
[CrossRef]

L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca, “Layout optimization at the pinnacle of optical lithography,” Proc. SPIE 5042, 1–14 (2003).
[CrossRef]

Sens. Actuators B (1)

R. B. Millington, A. G. Mayes, J. Blyth, and C. R. Lowe, “A hologram biosensor for proteases,” Sens. Actuators B 33, 55–59 (1996).
[CrossRef]

Other (10)

M. C. R. Leibovici and T. K. Gaylord, Optics Laboratory, Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia 30332-0250, USA are preparing a manuscript to be called “Pattern-integrated interference lithography: vector modeling of the single-exposure fabrication of photonic-crystal structures.”

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

N. H. Farhat, Advances in Holography (Dekker, 1976), Vol. 3.

H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).

G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask and methods of using and fabricating the same,” U.S. patent application 2012/0082943 (30September2010).

T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts (Printed for J. Johnson, 1807).

G. M. Burrow and T. K. Gaylord, “Interference projection exposure system and method of using the same,” U.S. patent application 2012/0081687 (30September2010).

M. Maldovan and E. L. Thomas, Periodic Materials and Interference Lithography (Wiley-VCH, 2009).

G. M. Burrow, “Pattern-integrated interference lithography: single-exposure formation of photonic crystal lattices with integrated functional elements,” Ph.D. thesis (Georgia Institute of Technology, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

(a) Conventional interference as the superposition of two, three, or more waves. (b) Conventional holography as the interference of a subject wave with a reference wave. (c) PII as the superposition of two, three, or more reference/subject waves. The resulting patterns are typically recorded in a photosensitive material.

Fig. 2.
Fig. 2.

Canonical interference system configuration. The expander and collimator lenses are arranged in a beam-expanding-telescope configuration to enlarge the beams and the resulting interference area.

Fig. 3.
Fig. 3.

Fourier transform holographic system configuration. The Fourier transform hologram of object A is interferometrically recorded in a photosensitive material using an off-axis reference wave.

Fig. 4.
Fig. 4.

Multiple-optical-axis PII system configuration. The optical elements in each axis are the same but they may differ. Only two beams are shown for clarity but there may be three, four, or more beams.

Fig. 5.
Fig. 5.

Multiple-optical-axis Fourier-transform PII system configuration. A double-objective lens system is employed in each optical axis.

Fig. 6.
Fig. 6.

Single-optical-axis PII system configuration. A single photomask, a single condenser lens and a single objective lens are employed for all the beams. The blocking elements in the mask are identical for all beams.

Fig. 7.
Fig. 7.

Single-optical-axis Fourier-transform PII system configuration. A single double-objective lens system and a single mask are employed for all the beams.

Fig. 8.
Fig. 8.

(a) Configuration for recording the DPM. In a single-optical-axis Fourier transform PII system, the DPM is placed after the last objective lens and holographically recorded by using an additional reference beam. (b) PII pattern reconstruction. The interfering beams and resulting PII pattern are reproduced by illuminating the DPM with the same reference beam.

Fig. 9.
Fig. 9.

Pattern blocking mask for the example PC microresonator structure. The device comprises a resonant cavity embedded within a straight waveguide.

Fig. 10.
Fig. 10.

(a) Normalized aerial intensity of a single off-axis beam at the PII system sample plane. The intensity distribution is in good agreement with the blocking mask of Fig. 9. (b) Normalized interference pattern resulting from the superposition of the three beams. Motifs corresponding to the mask blocking elements are largely missing in this 2D hexagonal lattice.

Fig. 11.
Fig. 11.

Pattern blocking mask for the example PC optical switch structure. The device comprises a resonant line-defect cavity as well as input and output waveguides. Four specified blocking elements have 75% amplitude transmittance for the formation of interference motifs with reduced diameter.

Fig. 12.
Fig. 12.

(a) Normalized aerial intensity of a single off-axis beam at the PII system sample plane. Due to the limited NA of the PII system, the pattern differs slightly from the blocking mask of Fig. 11. (b) Normalized interference pattern resulting from the superposition of the three beams. The blocking mask pattern has been efficiently subtracted from the 2D lattice pattern. Motifs corresponding to the 75% amplitude transmittance blocking elements have reduced diameters as shown in the inset.

Fig. 13.
Fig. 13.

Single-optical-axis Fourier-transform PII system. Only one beam is shown for convenience of representation.

Fig. 14.
Fig. 14.

Wavevector configurations of the three interfering beams at the sample plane.

Fig. 15.
Fig. 15.

Locations of intensity metrics ( In i ) for the example (a) PC microresonator filter and (b) PC optical switch.

Fig. 16.
Fig. 16.

Locations of lattice-vector metrics ( LV i ) for the example (a) PC microresonator filter and (b) PC optical switch.

Tables (4)

Tables Icon

Table 1. Single-Optical-Axis Fourier-Transform PII System Parameters Used for the Example PC Microresonator Filter and PC Optical Switch

Tables Icon

Table 2. Normalized Polarization Vectors of the Three Interfering Beams that Maximize the Absolute Contrast of the Interference Pattern at the Sample Plane

Tables Icon

Table 3. Intensity Metrics for the Example PC Microresonator Filter and PC Optical Switch

Tables Icon

Table 4. Lattice-Vector Metrics for the Example PC Microresonator Filter and PC Optical Switch

Metrics