Abstract

Spherical CdSe-CdS core-shell quantum dots (QDs) are found to be flexible in the transition between the type-I regime and the type-II regime with different core/shell dimensions. The quasi-type-II feature of the colloidal dots is confirmed with time-resolved photoluminescence (PL) measurements. Two recombination paths of the excitons with significantly different decay rates are observed and analyzed. The spherical CdSe-CdS core-shell QDs are numerically simulated to investigate the carrier separation. A relatively long radiative lifetime and high degree of spatial carrier separation provide good potential to achieve lasing under continuous-wave excitation. Amplified spontaneous emission at room temperature is detected from the QDs embedded in the polymer matrix. It is shown that a larger shell thickness results in a lower pumping threshold, while a smaller shell thickness leads to higher PL efficiency.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
    [CrossRef]
  2. S. Popov, “Dye photodestruction in a solid-state dye laser with polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998).
    [CrossRef]
  3. F. J. Duarte and R. O. James, “Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media,” Opt. Lett. 28, 2088–2090 (2003).
    [CrossRef]
  4. N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).
  5. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
    [CrossRef]
  6. J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, “Quasicontinuous gain in sol-gel derived CdS quantum dots,” Appl. Phys. Lett. 67, 2672–2674 (1995).
    [CrossRef]
  7. H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. I. Klimov, “Color-selective semiconductor nanocrystal laser, ” Appl. Phys. Lett. 80, 4614–4616 (2002).
    [CrossRef]
  8. A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002).
    [CrossRef]
  9. A. H. Nethercot, “Prediction of Fermi energies and photoelectric thresholds based on electronegativity concepts,” Phys. Rev. Lett. 33, 1088–1091 (1974).
    [CrossRef]
  10. C. Trager-Cowan, P. J. Parbrook, B. Henderson, and K. P. O’Donnell, “Band alignments in Zn(Cd)S(Se) strained layer superlattices,” Semicond. Sci. Technol. 7, 536–541 (1992).
    [CrossRef]
  11. K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
    [CrossRef]
  12. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).
    [CrossRef]
  13. L. Dong, S. Zhou, S. Popov, and A. T. Friberg, “Radiative properties of carriers in CdSe-CdS core-shell heterostructured nanocrystals of various geometries,” J. Europ. Opt. Soc. Rap. Public. (to be published).
  14. S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
    [CrossRef]
  15. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
    [CrossRef]
  16. A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
    [CrossRef]

2011 (1)

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

2007 (1)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
[CrossRef]

2004 (1)

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

2003 (2)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

F. J. Duarte and R. O. James, “Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media,” Opt. Lett. 28, 2088–2090 (2003).
[CrossRef]

2002 (2)

H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. I. Klimov, “Color-selective semiconductor nanocrystal laser, ” Appl. Phys. Lett. 80, 4614–4616 (2002).
[CrossRef]

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002).
[CrossRef]

2000 (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef]

1998 (1)

1997 (1)

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).
[CrossRef]

1995 (1)

J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, “Quasicontinuous gain in sol-gel derived CdS quantum dots,” Appl. Phys. Lett. 67, 2672–2674 (1995).
[CrossRef]

1994 (1)

N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).

1992 (2)

C. Trager-Cowan, P. J. Parbrook, B. Henderson, and K. P. O’Donnell, “Band alignments in Zn(Cd)S(Se) strained layer superlattices,” Semicond. Sci. Technol. 7, 536–541 (1992).
[CrossRef]

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

1974 (1)

A. H. Nethercot, “Prediction of Fermi energies and photoelectric thresholds based on electronegativity concepts,” Phys. Rev. Lett. 33, 1088–1091 (1974).
[CrossRef]

Achermann, M.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Alivisatos, A. P.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).
[CrossRef]

Anikeeva, P. O.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Balet, L. P.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Bawendi, M. G.

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002).
[CrossRef]

H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. I. Klimov, “Color-selective semiconductor nanocrystal laser, ” Appl. Phys. Lett. 80, 4614–4616 (2002).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef]

Bezel, I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
[CrossRef]

Bezel, I. V.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Butty, J.

J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, “Quasicontinuous gain in sol-gel derived CdS quantum dots,” Appl. Phys. Lett. 67, 2672–2674 (1995).
[CrossRef]

Chen, X.

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

Cockayne, B.

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

Dong, L.

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

L. Dong, S. Zhou, S. Popov, and A. T. Friberg, “Radiative properties of carriers in CdSe-CdS core-shell heterostructured nanocrystals of various geometries,” J. Europ. Opt. Soc. Rap. Public. (to be published).

Duarte, F. J.

Eisler, H.

H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. I. Klimov, “Color-selective semiconductor nanocrystal laser, ” Appl. Phys. Lett. 80, 4614–4616 (2002).
[CrossRef]

Eisler, H. J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef]

Friberg, A. T.

L. Dong, S. Zhou, S. Popov, and A. T. Friberg, “Radiative properties of carriers in CdSe-CdS core-shell heterostructured nanocrystals of various geometries,” J. Europ. Opt. Soc. Rap. Public. (to be published).

Golubok, A. O.

N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).

Guo, W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Guryanov, G. M.

N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).

Henderson, B.

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

C. Trager-Cowan, P. J. Parbrook, B. Henderson, and K. P. O’Donnell, “Band alignments in Zn(Cd)S(Se) strained layer superlattices,” Semicond. Sci. Technol. 7, 536–541 (1992).
[CrossRef]

Hollingsworth, J. A.

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef]

Htoon, H.

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002).
[CrossRef]

Hu, Y. Z.

J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, “Quasicontinuous gain in sol-gel derived CdS quantum dots,” Appl. Phys. Lett. 67, 2672–2674 (1995).
[CrossRef]

Irvine, D. J.

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

Ivanov, S. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

James, R. O.

Kadavanich, A. V.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).
[CrossRef]

Kao, Y. H.

J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, “Quasicontinuous gain in sol-gel derived CdS quantum dots,” Appl. Phys. Lett. 67, 2672–2674 (1995).
[CrossRef]

Klimov, V. I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
[CrossRef]

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002).
[CrossRef]

H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. I. Klimov, “Color-selective semiconductor nanocrystal laser, ” Appl. Phys. Lett. 80, 4614–4616 (2002).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef]

Klimov, Victor I.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef]

Ledentsov, N. N.

N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).

Li, S.

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

Mackenzie, J. D.

J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, “Quasicontinuous gain in sol-gel derived CdS quantum dots,” Appl. Phys. Lett. 67, 2672–2674 (1995).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef]

Malko, A. V.

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002).
[CrossRef]

Marcinkevicius, S.

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

McGuire, J. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
[CrossRef]

Mikhailovsky, A. A.

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef]

Mitra, S.

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

Muhammed, M.

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

Nanda, J.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Nethercot, A. H.

A. H. Nethercot, “Prediction of Fermi energies and photoelectric thresholds based on electronegativity concepts,” Phys. Rev. Lett. 33, 1088–1091 (1974).
[CrossRef]

O’Donnell, K. P.

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

C. Trager-Cowan, P. J. Parbrook, B. Henderson, and K. P. O’Donnell, “Band alignments in Zn(Cd)S(Se) strained layer superlattices,” Semicond. Sci. Technol. 7, 536–541 (1992).
[CrossRef]

Parbrook, P. J.

C. Trager-Cowan, P. J. Parbrook, B. Henderson, and K. P. O’Donnell, “Band alignments in Zn(Cd)S(Se) strained layer superlattices,” Semicond. Sci. Technol. 7, 536–541 (1992).
[CrossRef]

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

Peng, X.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).
[CrossRef]

Petrov, V. N.

N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).

Petruska, M. A.

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002).
[CrossRef]

Peyghambarian, N.

J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, “Quasicontinuous gain in sol-gel derived CdS quantum dots,” Appl. Phys. Lett. 67, 2672–2674 (1995).
[CrossRef]

Piryatinski, A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
[CrossRef]

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Popov, S.

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

S. Popov, “Dye photodestruction in a solid-state dye laser with polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998).
[CrossRef]

L. Dong, S. Zhou, S. Popov, and A. T. Friberg, “Radiative properties of carriers in CdSe-CdS core-shell heterostructured nanocrystals of various geometries,” J. Europ. Opt. Soc. Rap. Public. (to be published).

Qu, L.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Samsonenko, Y. B.

N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).

Schlamp, M. C.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).
[CrossRef]

Smith, H. I.

H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. I. Klimov, “Color-selective semiconductor nanocrystal laser, ” Appl. Phys. Lett. 80, 4614–4616 (2002).
[CrossRef]

Sugunan, A.

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

Sundar, V. C.

H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. I. Klimov, “Color-selective semiconductor nanocrystal laser, ” Appl. Phys. Lett. 80, 4614–4616 (2002).
[CrossRef]

Tipisev, S. Y.

N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).

Toprak, M. S.

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

Trager-Cowan, C.

C. Trager-Cowan, P. J. Parbrook, B. Henderson, and K. P. O’Donnell, “Band alignments in Zn(Cd)S(Se) strained layer superlattices,” Semicond. Sci. Technol. 7, 536–541 (1992).
[CrossRef]

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

Tretiak, S.

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Tsyrlin, G. E.

N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).

Walsh, M.

H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. I. Klimov, “Color-selective semiconductor nanocrystal laser, ” Appl. Phys. Lett. 80, 4614–4616 (2002).
[CrossRef]

Wright, P. J.

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef]

Yang, F.

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

Yu, W. W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Zhao, Y.

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

Zhou, S.

L. Dong, S. Zhou, S. Popov, and A. T. Friberg, “Radiative properties of carriers in CdSe-CdS core-shell heterostructured nanocrystals of various geometries,” J. Europ. Opt. Soc. Rap. Public. (to be published).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, “Quasicontinuous gain in sol-gel derived CdS quantum dots,” Appl. Phys. Lett. 67, 2672–2674 (1995).
[CrossRef]

H. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. I. Klimov, “Color-selective semiconductor nanocrystal laser, ” Appl. Phys. Lett. 80, 4614–4616 (2002).
[CrossRef]

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303–1305 (2002).
[CrossRef]

Chem. Mater. (1)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

J. Am. Chem. Soc. (1)

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).
[CrossRef]

J. Cryst. Growth (1)

K. P. O’Donnell, P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright, and B. Cockayne, “The optical properties of wide bandgap binary II–VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).
[CrossRef]

J. Phys. Chem. B (1)

S. A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. P. Balet, I. V. Bezel, P. O. Anikeeva, S. Tretiak, and Victor I. Klimov, “Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).
[CrossRef]

Nanotechnology (1)

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, M. S. Toprak, and M. Muhammed, “Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots,” Nanotechnology 22, 425202 (2011).
[CrossRef]

Nature (1)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. H. Nethercot, “Prediction of Fermi energies and photoelectric thresholds based on electronegativity concepts,” Phys. Rev. Lett. 33, 1088–1091 (1974).
[CrossRef]

Science (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[CrossRef]

Semicond. Sci. Technol. (1)

C. Trager-Cowan, P. J. Parbrook, B. Henderson, and K. P. O’Donnell, “Band alignments in Zn(Cd)S(Se) strained layer superlattices,” Semicond. Sci. Technol. 7, 536–541 (1992).
[CrossRef]

Semiconductors (1)

N. N. Ledentsov, G. M. Guryanov, G. E. Tsyrlin, V. N. Petrov, Y. B. Samsonenko, A. O. Golubok, and S. Y. Tipisev, “Effect of heat-treatment conditions on the surface morphology of gallium arsenide grown on vicinal GaAs (100) substrates by molecular-beam epitaxy,” Semiconductors 28, 526–527(1994).

Other (1)

L. Dong, S. Zhou, S. Popov, and A. T. Friberg, “Radiative properties of carriers in CdSe-CdS core-shell heterostructured nanocrystals of various geometries,” J. Europ. Opt. Soc. Rap. Public. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross-section schematics of first-order carrier wave function ψ a for (a) electrons and (b) holes in spherical CdSe-CdS core-shell QDs. The maximum and minimum values in the scale bar are 2.177 and 0 for (a) and 7.017 and 0 for (b).

Fig. 2.
Fig. 2.

Carrier overlap integral as a function of the core radius and the shell thickness for spherical CdSe-CdS core-shell QDs.

Fig. 3.
Fig. 3.

TEM image of an ensemble of the CdSe core (2.0 nm radius) (a) before and (b) after addition of the CdS shell of 2.0 nm thickness.

Fig. 4.
Fig. 4.

Radiative decay dynamics for CdSe-CdS core-shell structure QDs with (a) CdSe cores of 2.0 nm radius (sample 1) and (b) 1.2 nm radius (sample 2), both having the same shell (CdS) thickness of 2.0 nm. The blue asterisks are experimental data; the red curve is double-exponential fitting with the elimination of the influence from previous pump pulses. The fitting parameters give estimation for a fast decay time of 0.19 ns and a slow decay time of 7.2 ns for sample 1, and 0.15 and 9.0 ns, respectively, for sample 2.

Fig. 5.
Fig. 5.

Dependence of ASE as a function of pump intensity in PL spectra from CdSe-CdS core-shell structured QDs with (a) 1.2 nm core radius, 2.0 nm thick shell (sample 2), and (b) 1.2 nm core radius, 1.0 nm thick shell (sample 3). Sections (c) and (d) show the PL intensity versus the pump intensity at the peak wavelength (squares) corresponding to the spectra in (a) and (b), respectively. The intensity values have been normalized with respect to their corresponding maxima. Compared with a straight line (black, dashed) in the plot, a superlinear dependence of the PL intensity on the pump intensity (red, solid) is observed in both samples, even though the superlinear increase is weak. It implies the existence of the ASE in the samples.

Fig. 6.
Fig. 6.

Pump dependence of the PL intensity for sample 2 and sample 3 under the same experimental conditions. The PL intensity has been calibrated according to the different 400 nm absorbance of the two samples (0.702 and 0.656 in arbitrary units, respectively). It is noted that sample 3, which has a thinner shell, shows significantly higher luminescence than sample 2.

Tables (1)

Tables Icon

Table 1. Samples of Different Sizes

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ 2 2 m a * ( r ) 2 + V a ( r ) ] ψ a ( r ) = E a ψ a ( r ) ,
V ( r ) = { V core ; r < R V shell ; R < r < R + H ; r > R + H ,
Θ e h = | ψ h | ψ e | 2 = [ ψ h * ψ e d V ] 2 .

Metrics