Abstract

Different strategies for designing optical couplers, optimized to enhance the pump absorption in the rare-earth-doped core of microstructured fiber lasers, are illustrated. Three kinds/configurations of optical couplers have been designed and compared as examples of the different design strategies which can be followed. Their effectiveness to enhance the performance of an ytterbium-doped, double cladding, microstructured optical fiber laser has been accurately simulated. They consist of a suitable cascade of multiple long-period gratings (MLPGs) inscribed in the fiber core region. The characteristics of the MLPG couplers have been simulated via a homemade computer code based on both rate equations and an extended coupled mode theory. The proposed MLPG couplers seem particularly useful in the case of low rare-earth concentration but, even for a middle-high ytterbium concentration, as NYb=5×1025ions/m3, the slope efficiency S can be increased up to 20%, depending on the fiber length.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
    [CrossRef]
  2. E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 20–29 (2009).
    [CrossRef]
  3. G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011).
    [CrossRef]
  4. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47, 471–478 (2011).
    [CrossRef]
  5. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27, 1565–1570 (2009).
    [CrossRef]
  6. K. Saitoh, M. Koshiba, T. Hasegawa, and F. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
    [CrossRef]
  7. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
    [CrossRef]
  8. B. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, and J. N. Jang, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22, 1769–1771 (1997).
    [CrossRef]
  9. P. Steivurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14, 3007–3014 (2006).
    [CrossRef]
  10. D. Lee, Y. Jung, Y. S. Jeong, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Highly polarization-dependent periodic coupling in mechanically induced long period grating over air-silica fibers,” Opt. Lett. 31, 296–298 (2006).
    [CrossRef]
  11. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29, 331–333 (2004).
    [CrossRef]
  12. J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007).
    [CrossRef]
  13. C. L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26, 220–227 (2008).
    [CrossRef]
  14. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
    [CrossRef]
  15. T. Erdogan, “Cladding-mode resonances in short-and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760–1773 (1997).
    [CrossRef]
  16. L. Mescia, “Design of long-period gratings in cladding-pumped microstructured optical fiber,” J. Opt. Soc. Am. B 25, 1833–1839 (2008).
    [CrossRef]
  17. G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.
  18. S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump-coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
    [CrossRef]
  19. T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
    [CrossRef]
  20. J. Long, W. Zhi, L. Yange, K. Guiyun, and D. Xiaoyi, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16, 21119–21131 (2008).
    [CrossRef]
  21. L. Shujing, J. Long, J. Wei, W. Dongning, L. Changrui, and W. Ying, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18, 5496–5503 (2010).
    [CrossRef]
  22. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
  23. M. J. F. Digonnet and V. Dangui, “Double-clad fiber lasers and amplifiers having long-period fiber gratings,” European patent EP 1 506 443 B1 (2005).
  24. L. Mescia, T. Palmisano, M. Surico, and F. Prudenzano, “Long-period gratings for the optimization of cladding-pumped microstructured optical fiber laser,” Opt. Mater. 33, 236–240 (2010).
    [CrossRef]
  25. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984).
    [CrossRef]
  26. R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [CrossRef]
  27. G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium doped holey fibre amplifier,” J. Non-Cryst. Solids 351, 1840–1845 (2005).
    [CrossRef]
  28. A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad ytterbium doped microstructured fibre laser,” Appl. Surf. Sci. 248, 499–502 (2005).
    [CrossRef]
  29. M. Sabaeian, H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31, 1300–1305 (2009).
    [CrossRef]
  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

2011 (2)

G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011).
[CrossRef]

D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47, 471–478 (2011).
[CrossRef]

2010 (3)

2009 (3)

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27, 1565–1570 (2009).
[CrossRef]

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 20–29 (2009).
[CrossRef]

M. Sabaeian, H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31, 1300–1305 (2009).
[CrossRef]

2008 (4)

2007 (2)

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007).
[CrossRef]

2006 (3)

2005 (2)

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium doped holey fibre amplifier,” J. Non-Cryst. Solids 351, 1840–1845 (2005).
[CrossRef]

A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad ytterbium doped microstructured fibre laser,” Appl. Surf. Sci. 248, 499–502 (2005).
[CrossRef]

2004 (1)

2003 (1)

2000 (1)

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

1999 (1)

1997 (3)

1984 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Allegretti, L.

G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.

Allsop, T.

T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
[CrossRef]

Baek, S.

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump-coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

Bennion, I.

T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
[CrossRef]

J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007).
[CrossRef]

Benson, T. M.

Burdge, G. L.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

Calò, G.

G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.

Carlone, G.

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium doped holey fibre amplifier,” J. Non-Cryst. Solids 351, 1840–1845 (2005).
[CrossRef]

Changrui, L.

Chen, D.

G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011).
[CrossRef]

Choi, S. S.

D’Orazio, A.

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium doped holey fibre amplifier,” J. Non-Cryst. Solids 351, 1840–1845 (2005).
[CrossRef]

A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad ytterbium doped microstructured fibre laser,” Appl. Surf. Sci. 248, 499–502 (2005).
[CrossRef]

G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.

Dangui, V.

M. J. F. Digonnet and V. Dangui, “Double-clad fiber lasers and amplifiers having long-period fiber gratings,” European patent EP 1 506 443 B1 (2005).

De Sario, M.

M. Sabaeian, H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31, 1300–1305 (2009).
[CrossRef]

A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad ytterbium doped microstructured fibre laser,” Appl. Surf. Sci. 248, 499–502 (2005).
[CrossRef]

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium doped holey fibre amplifier,” J. Non-Cryst. Solids 351, 1840–1845 (2005).
[CrossRef]

G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.

Demokan, M. S.

Dianov, E. M.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 20–29 (2009).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet and V. Dangui, “Double-clad fiber lasers and amplifiers having long-period fiber gratings,” European patent EP 1 506 443 B1 (2005).

Dobb, H.

Dong, L.

Dongning, W.

Dubov, M.

T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
[CrossRef]

Eberhardt, R.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

Fermann, M. E.

Fevrier, S.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 20–29 (2009).
[CrossRef]

Fleming, J. W.

Fu, L.

Furniss, D.

Guiyun, K.

Hale, A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

Hanna, D.

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Hasegawa, T.

Hu, L.

G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011).
[CrossRef]

Jackson, D.

D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47, 471–478 (2011).
[CrossRef]

Jang, J. N.

Jeong, Y.

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump-coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

Jeong, Y. S.

Jin, W.

Ju, J.

Jung, Y.

Kalli, K.

T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
[CrossRef]

J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007).
[CrossRef]

Kim, J. C.

Kirchhof, J.

Klingebiel, S.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Kobelke, J.

Koshiba, M.

Kuhlmey, B. T.

Laia, Y.

T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
[CrossRef]

Lee, B.

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump-coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

Lee, B. H.

Lee, D.

Lee, K. S.

Lee, S. B.

Li, J.

Likhachev, M. E.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 20–29 (2009).
[CrossRef]

Lim, J. H.

Limpert, J.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Liu, Y.

Long, J.

Mägi, E. C.

Marcinkevicius, A.

Mckay, H. A.

Mescia, L.

L. Mescia, T. Palmisano, M. Surico, and F. Prudenzano, “Long-period gratings for the optimization of cladding-pumped microstructured optical fiber laser,” Opt. Mater. 33, 236–240 (2010).
[CrossRef]

M. Sabaeian, H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31, 1300–1305 (2009).
[CrossRef]

L. Mescia, “Design of long-period gratings in cladding-pumped microstructured optical fiber,” J. Opt. Soc. Am. B 25, 1833–1839 (2008).
[CrossRef]

A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad ytterbium doped microstructured fibre laser,” Appl. Surf. Sci. 248, 499–502 (2005).
[CrossRef]

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium doped holey fibre amplifier,” J. Non-Cryst. Solids 351, 1840–1845 (2005).
[CrossRef]

G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.

Mezentsev, V. K.

Moore, E. D.

Nadgaran, H.

M. Sabaeian, H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31, 1300–1305 (2009).
[CrossRef]

Nilsson, J.

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Oh, K.

Palmisano, T.

L. Mescia, T. Palmisano, M. Surico, and F. Prudenzano, “Long-period gratings for the optimization of cladding-pumped microstructured optical fiber laser,” Opt. Mater. 33, 236–240 (2010).
[CrossRef]

G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.

Paschotta, R.

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Peschel, T.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Petrovic, J. S.

Petruzzelli, V.

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium doped holey fibre amplifier,” J. Non-Cryst. Solids 351, 1840–1845 (2005).
[CrossRef]

A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad ytterbium doped microstructured fibre laser,” Appl. Surf. Sci. 248, 499–502 (2005).
[CrossRef]

G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.

Pollnau, M.

D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47, 471–478 (2011).
[CrossRef]

Prudenzano, F.

L. Mescia, T. Palmisano, M. Surico, and F. Prudenzano, “Long-period gratings for the optimization of cladding-pumped microstructured optical fiber laser,” Opt. Mater. 33, 236–240 (2010).
[CrossRef]

M. Sabaeian, H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31, 1300–1305 (2009).
[CrossRef]

A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad ytterbium doped microstructured fibre laser,” Appl. Surf. Sci. 248, 499–502 (2005).
[CrossRef]

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium doped holey fibre amplifier,” J. Non-Cryst. Solids 351, 1840–1845 (2005).
[CrossRef]

G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.

Qiu, J.

G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011).
[CrossRef]

Roh, S.

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump-coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

Roser, F.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Sabaeian, M.

M. Sabaeian, H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31, 1300–1305 (2009).
[CrossRef]

Saitoh, K.

Sasaoka, F.

Schreiber, T.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Schuster, K.

Seddon, A. B.

Shujing, L.

Smith, G.

T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
[CrossRef]

Spalter, S.

Steivurzel, P.

Strasser, T. A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
[CrossRef]

Sujecki, S.

Surico, M.

L. Mescia, T. Palmisano, M. Surico, and F. Prudenzano, “Long-period gratings for the optimization of cladding-pumped microstructured optical fiber laser,” Opt. Mater. 33, 236–240 (2010).
[CrossRef]

Tang, Z.

Thomas, B. K.

Tropper, A.

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Tunnermann, A.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Wang, M.

G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011).
[CrossRef]

Webb, D.

T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
[CrossRef]

Webb, D. J.

Wei, J.

Westbrook, P. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
[CrossRef]

Windeler, R. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
[CrossRef]

Wirth, C.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Xiao, L.

Xiaoyi, D.

Yange, L.

Ying, W.

Yu, C.

G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011).
[CrossRef]

Zhang, G.

G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011).
[CrossRef]

Zhao, C. L.

Zhi, W.

Zhou, K.

T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
[CrossRef]

Zhou, Q.

G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad ytterbium doped microstructured fibre laser,” Appl. Surf. Sci. 248, 499–502 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47, 471–478 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 20–29 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

G. Zhang, M. Wang, C. Yu, Q. Zhou, J. Qiu, L. Hu, and D. Chen, “Efficient generation of watt-level output from short-length nd-doped phosphate fiber lasers,” IEEE Photon. Technol. Lett. 23, 350–352 (2011).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495–497 (2000).
[CrossRef]

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump-coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium doped holey fibre amplifier,” J. Non-Cryst. Solids 351, 1840–1845 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. Allsop, K. Kalli, K. Zhou, G. Smith, Y. Laia, G. Smith, M. Dubov, D. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Opt. Commun. 281, 5092–5096(2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. (2)

M. Sabaeian, H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass fiber laser,” Opt. Mater. 31, 1300–1305 (2009).
[CrossRef]

L. Mescia, T. Palmisano, M. Surico, and F. Prudenzano, “Long-period gratings for the optimization of cladding-pumped microstructured optical fiber laser,” Opt. Mater. 33, 236–240 (2010).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

G. Calò, A. D’orazio, M. De Sario, L. Mescia, V. Petruzzelli, L. Allegretti, T. Palmisano, and F. Prudenzano, “Improvement of the pump power coupling in double cladding photonic crystal fiber,” in IEEE/LEOS Winter Topical Meeting Series (IEEE, 2008), pp. 146–147.

M. J. F. Digonnet and V. Dangui, “Double-clad fiber lasers and amplifiers having long-period fiber gratings,” European patent EP 1 506 443 B1 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Ytterbium-doped MOF laser without any grating, (b) ytterbium-doped MOF laser with the MLPGs-P grating cascade, (c) ytterbium-doped MOF laser with the MLPGs-A grating cascade, (d) ytterbium-doped MOF laser with the DS-MLPGs grating cascade, and (e) 3D sketch of the ytterbium-doped MOF laser with the MLPGs-A grating cascade.

Fig. 2.
Fig. 2.

Power of the cladding modes CLν versus the fiber length in absence of grating.

Fig. 3.
Fig. 3.

Core mode power Pcore(λp) of the fundamental mode HE11 versus the grating period Λ, for the undoped fiber, at the pump wavelength λp and for a fiber length L=10cm.

Fig. 4.
Fig. 4.

Core mode power Pcore(λs) of the fundamental mode HE11 at the signal wavelength (λs) versus the grating period Λ, for the undoped fiber, and for a fiber length L=10cm.

Fig. 5.
Fig. 5.

Powers Pclad(λp), Pcore(λp), Pcore+(λs), and Pcore(λs) versus the position along the fiber longitudinal axis z without MLPGs.

Fig. 6.
Fig. 6.

Powers Pclad(λp), Pcore(λp), Pcore+(λs), and Pcore(λs) versus the position along the fiber longitudinal axis z, MLPGs-P of Table 4.

Fig. 7.
Fig. 7.

Powers Pclad(λp), Pcore(λp), Pcore+(λs), and Pcore(λs) versus the position along the fiber longitudinal axis z, MLPGs-A of Table 5.

Fig. 8.
Fig. 8.

Powers Pclad(λp), Pcore(λp), Pcore+(λs), and Pcore(λs) versus the position along the fiber longitudinal axis z, DS-MLPGs of Table 6.

Fig. 9.
Fig. 9.

MOF laser characteristics without grating (full curve), with MLPGs-P inscribed without the cavity (dash curve), with MLPGs-A inscribed entirely within the cavity (point curve), with the DS-MLPGs (dash-point curve); the laser length is L=0.83m.

Tables (6)

Tables Icon

Table 1. Main MOF Laser Parameters Employed in Simulation

Tables Icon

Table 2. Refractive Effective Indices of the Core Guided Mode HE11 (ν=1) and of the Cladding Modes CLν (ν>1), Overlapping Coefficient Γν with the Core Region, Coupling Coefficient k1ν among the Considered Cladding Mode CLν and the Fundamental Core Mode HE11

Tables Icon

Table 3. Resonances Between the Core Fundamental Modes and the Cladding Modes

Tables Icon

Table 4. Parameters of the Designed MLPGs-P

Tables Icon

Table 5. Parameters of the Designed MLPGs-A

Tables Icon

Table 6. Parameters of the Designed DS-MLPGs

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Δn(z)=n1(z)n1=n1σ(z)[1+mcos(2πz/Λ)],
ΩEν(x,y)·Eν*(x,y)dxdy=1,
dAμpumpdz=iν=1N{AνpumpKνμexp[i(βνβμ)z]}+12α(z,λp)Aμpumpμ=1,2,,N,
dAsignal±dz=±α(z,λs)2Asignal±,
Kνμ(z)=kνμ(z)[1+mcos(2πz/Λ)],
kνμ(z)=ωεon12σ(z)2SEν(x,y)·Eμ*(x,y)dxdy,
α(z,λi)=[σ21(λi)N2(z)σ12(λi)N1(z)]Γν(λi)γ(λi),i=s,p,
N2=WPGSA+WSGSAWPGSA+WSGSA+1/τ21+WPE+WSENYb,
N1=NYbN2,
Γν(λi)=sdEν(x,y,λi)·Eν*(x,y,λi)dxdyΩEν(x,y,λi)·Eν*(x,y,λi)dxdy,i=s,p,
Δn(z,T)=n1σ(z)f(z)+nT|T=T(TT)+[n1+n1σ(z)f(z)1](1+υ)αT(TT),
L=L0(1+αT(TT)),
PthSRS16AeffgRLeff,
PthSBS21Aeffg˜BLeff,
g˜BΔνBΔνB+ΔνpgB,

Metrics