Abstract

We investigated the optical absorption spectra of Ag-, Cu-, and Au-mesoporous SiO2 systems, respectively, after the samples were heated in dry air and in wet air. As expected, dry air at high temperature leads to the surface plasmon resonance (SPR) disappearance of Ag-SiO2 and Cu-SiO2 and a slight SPR increase of Au-SiO2. However, a small amount of water vapor in air induces a strong SPR appearance for both Ag- and Au-containing samples, indicating that water vapor plays an abnormal reduction effect on both Ag and Au species in mesoporous SiO2, despite the fact that it usually plays an oxidation role on Pt-group metals, but it cannot induce the SPR appearance for the Cu-containing sample under the same condition.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Jiménez, H. Liu, and E. Fachini, “X-ray photoelectron spectroscopy of silver nanoparticles in phosphate glass,” Mater. Lett. 64, 2046–2048 (2010).
  2. Y. Li, N. Koshizaki, and W. P. Cai, “Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices,” Coordin. Chem. Rev. 255, 357–373 (2011).
    [CrossRef]
  3. S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008).
    [CrossRef]
  4. L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, “The features of surface plasmon resonance in gold cluster films,” Semicond. Phys. Quantum Electron. Optoelectron. 12, 129–134 (2009).
  5. E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science 326, 1091–1094 (2009).
    [CrossRef]
  6. V. Hornebecq, M. Antonietti, T. Cardinal, and M. Treguer-Delapierre, “Stable silver nanoparticles immobilized in mesoporous silica,” Chem. Mater. 15, 1993–1999 (2003).
    [CrossRef]
  7. D. K. Sarkar, F. Cloutier, and M. A. El Khakani, “Electrical switching in sol-gel derived Ag-SiO2 nanocomposite thin films,” J. Appl. Phys. 97, 084302 (2005).
    [CrossRef]
  8. A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003).
    [CrossRef]
  9. G. De, M. Gusso, and L. Tapfer, “Annealing behavior of silver, copper, and silver-copper nanoclusters in a silica matrix synthesized by the sol-gel technique,” J. Appl. Phys. 80, 6734–6739 (1996).
    [CrossRef]
  10. J. A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129, 1546–1554 (2009).
    [CrossRef]
  11. J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009).
    [CrossRef]
  12. W. Cai, L. Zhang, H. Zhong, and G. He, “Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption,” J. Mater. Res. 13, 2888–2895 (1998).
    [CrossRef]
  13. H. Bi, W. Cai, H. Shi, and X. Liu, “Optical absorption of Ag oligomers dispersed within pores of mesoporous silica,” Chem. Phys. Lett. 357, 249–254 (2002).
    [CrossRef]
  14. J. Hu, W. Cai, C. Li, Y. Gan, and L. Chen, “In situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum,” Appl. Phys. Lett. 86, 151915 (2005).
    [CrossRef]
  15. C. Kan, W. Cai, Z. Li, G. Fu, and L. Zhang, “Reduction effect of pore wall and formation of Au nanowires inside monolithic mesoporous silica,” Chem. Phys. Lett. 382, 318–324 (2003).
    [CrossRef]
  16. J. Hu, W. Lee, W. Cai, L. Tong, and H. Zeng, “Evolution of the optical spectra of an Ag/mesoporous SiO2 nanostructure heat-treated in air and H2 atmospheres,” Nanotechnology 18, 185710 (2007).
    [CrossRef]
  17. C. Chambers and A. K. Holliday, eds., Inorganic Chemistry (Butterworth, 1982).
  18. S. Z. Baykara, “Experimental solar water thermolysis,” Int. J. Hydrogen Energy 29, 1459–1469 (2004).
    [CrossRef]

2011 (1)

Y. Li, N. Koshizaki, and W. P. Cai, “Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices,” Coordin. Chem. Rev. 255, 357–373 (2011).
[CrossRef]

2010 (1)

J. A. Jiménez, H. Liu, and E. Fachini, “X-ray photoelectron spectroscopy of silver nanoparticles in phosphate glass,” Mater. Lett. 64, 2046–2048 (2010).

2009 (4)

L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, “The features of surface plasmon resonance in gold cluster films,” Semicond. Phys. Quantum Electron. Optoelectron. 12, 129–134 (2009).

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science 326, 1091–1094 (2009).
[CrossRef]

J. A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129, 1546–1554 (2009).
[CrossRef]

J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009).
[CrossRef]

2008 (1)

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008).
[CrossRef]

2007 (1)

J. Hu, W. Lee, W. Cai, L. Tong, and H. Zeng, “Evolution of the optical spectra of an Ag/mesoporous SiO2 nanostructure heat-treated in air and H2 atmospheres,” Nanotechnology 18, 185710 (2007).
[CrossRef]

2005 (2)

J. Hu, W. Cai, C. Li, Y. Gan, and L. Chen, “In situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum,” Appl. Phys. Lett. 86, 151915 (2005).
[CrossRef]

D. K. Sarkar, F. Cloutier, and M. A. El Khakani, “Electrical switching in sol-gel derived Ag-SiO2 nanocomposite thin films,” J. Appl. Phys. 97, 084302 (2005).
[CrossRef]

2004 (1)

S. Z. Baykara, “Experimental solar water thermolysis,” Int. J. Hydrogen Energy 29, 1459–1469 (2004).
[CrossRef]

2003 (3)

C. Kan, W. Cai, Z. Li, G. Fu, and L. Zhang, “Reduction effect of pore wall and formation of Au nanowires inside monolithic mesoporous silica,” Chem. Phys. Lett. 382, 318–324 (2003).
[CrossRef]

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

V. Hornebecq, M. Antonietti, T. Cardinal, and M. Treguer-Delapierre, “Stable silver nanoparticles immobilized in mesoporous silica,” Chem. Mater. 15, 1993–1999 (2003).
[CrossRef]

2002 (1)

H. Bi, W. Cai, H. Shi, and X. Liu, “Optical absorption of Ag oligomers dispersed within pores of mesoporous silica,” Chem. Phys. Lett. 357, 249–254 (2002).
[CrossRef]

1998 (1)

W. Cai, L. Zhang, H. Zhong, and G. He, “Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption,” J. Mater. Res. 13, 2888–2895 (1998).
[CrossRef]

1996 (1)

G. De, M. Gusso, and L. Tapfer, “Annealing behavior of silver, copper, and silver-copper nanoclusters in a silica matrix synthesized by the sol-gel technique,” J. Appl. Phys. 80, 6734–6739 (1996).
[CrossRef]

Al-Harthi, S. H.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008).
[CrossRef]

Anantharaman, M. R.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008).
[CrossRef]

Antonietti, M.

V. Hornebecq, M. Antonietti, T. Cardinal, and M. Treguer-Delapierre, “Stable silver nanoparticles immobilized in mesoporous silica,” Chem. Mater. 15, 1993–1999 (2003).
[CrossRef]

Baykara, S. Z.

S. Z. Baykara, “Experimental solar water thermolysis,” Int. J. Hydrogen Energy 29, 1459–1469 (2004).
[CrossRef]

Bi, H.

H. Bi, W. Cai, H. Shi, and X. Liu, “Optical absorption of Ag oligomers dispersed within pores of mesoporous silica,” Chem. Phys. Lett. 357, 249–254 (2002).
[CrossRef]

Cabrera, C. R.

J. A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129, 1546–1554 (2009).
[CrossRef]

Cai, W.

J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009).
[CrossRef]

J. Hu, W. Lee, W. Cai, L. Tong, and H. Zeng, “Evolution of the optical spectra of an Ag/mesoporous SiO2 nanostructure heat-treated in air and H2 atmospheres,” Nanotechnology 18, 185710 (2007).
[CrossRef]

J. Hu, W. Cai, C. Li, Y. Gan, and L. Chen, “In situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum,” Appl. Phys. Lett. 86, 151915 (2005).
[CrossRef]

C. Kan, W. Cai, Z. Li, G. Fu, and L. Zhang, “Reduction effect of pore wall and formation of Au nanowires inside monolithic mesoporous silica,” Chem. Phys. Lett. 382, 318–324 (2003).
[CrossRef]

H. Bi, W. Cai, H. Shi, and X. Liu, “Optical absorption of Ag oligomers dispersed within pores of mesoporous silica,” Chem. Phys. Lett. 357, 249–254 (2002).
[CrossRef]

W. Cai, L. Zhang, H. Zhong, and G. He, “Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption,” J. Mater. Res. 13, 2888–2895 (1998).
[CrossRef]

Cardinal, T.

V. Hornebecq, M. Antonietti, T. Cardinal, and M. Treguer-Delapierre, “Stable silver nanoparticles immobilized in mesoporous silica,” Chem. Mater. 15, 1993–1999 (2003).
[CrossRef]

Chen, L.

J. Hu, W. Cai, C. Li, Y. Gan, and L. Chen, “In situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum,” Appl. Phys. Lett. 86, 151915 (2005).
[CrossRef]

Cloutier, F.

D. K. Sarkar, F. Cloutier, and M. A. El Khakani, “Electrical switching in sol-gel derived Ag-SiO2 nanocomposite thin films,” J. Appl. Phys. 97, 084302 (2005).
[CrossRef]

De, G.

G. De, M. Gusso, and L. Tapfer, “Annealing behavior of silver, copper, and silver-copper nanoclusters in a silica matrix synthesized by the sol-gel technique,” J. Appl. Phys. 80, 6734–6739 (1996).
[CrossRef]

Ding, Z.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

El Khakani, M. A.

D. K. Sarkar, F. Cloutier, and M. A. El Khakani, “Electrical switching in sol-gel derived Ag-SiO2 nanocomposite thin films,” J. Appl. Phys. 97, 084302 (2005).
[CrossRef]

Fachini, E.

J. A. Jiménez, H. Liu, and E. Fachini, “X-ray photoelectron spectroscopy of silver nanoparticles in phosphate glass,” Mater. Lett. 64, 2046–2048 (2010).

J. A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129, 1546–1554 (2009).
[CrossRef]

Fu, G.

C. Kan, W. Cai, Z. Li, G. Fu, and L. Zhang, “Reduction effect of pore wall and formation of Au nanowires inside monolithic mesoporous silica,” Chem. Phys. Lett. 382, 318–324 (2003).
[CrossRef]

Gan, Y.

J. Hu, W. Cai, C. Li, Y. Gan, and L. Chen, “In situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum,” Appl. Phys. Lett. 86, 151915 (2005).
[CrossRef]

Gusso, M.

G. De, M. Gusso, and L. Tapfer, “Annealing behavior of silver, copper, and silver-copper nanoclusters in a silica matrix synthesized by the sol-gel technique,” J. Appl. Phys. 80, 6734–6739 (1996).
[CrossRef]

He, G.

W. Cai, L. Zhang, H. Zhong, and G. He, “Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption,” J. Mater. Res. 13, 2888–2895 (1998).
[CrossRef]

Hornebecq, V.

V. Hornebecq, M. Antonietti, T. Cardinal, and M. Treguer-Delapierre, “Stable silver nanoparticles immobilized in mesoporous silica,” Chem. Mater. 15, 1993–1999 (2003).
[CrossRef]

Hu, J.

J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009).
[CrossRef]

J. Hu, W. Lee, W. Cai, L. Tong, and H. Zeng, “Evolution of the optical spectra of an Ag/mesoporous SiO2 nanostructure heat-treated in air and H2 atmospheres,” Nanotechnology 18, 185710 (2007).
[CrossRef]

J. Hu, W. Cai, C. Li, Y. Gan, and L. Chen, “In situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum,” Appl. Phys. Lett. 86, 151915 (2005).
[CrossRef]

Jamal, E. M. A.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008).
[CrossRef]

Jiménez, J. A.

J. A. Jiménez, H. Liu, and E. Fachini, “X-ray photoelectron spectroscopy of silver nanoparticles in phosphate glass,” Mater. Lett. 64, 2046–2048 (2010).

J. A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129, 1546–1554 (2009).
[CrossRef]

Kan, C.

C. Kan, W. Cai, Z. Li, G. Fu, and L. Zhang, “Reduction effect of pore wall and formation of Au nanowires inside monolithic mesoporous silica,” Chem. Phys. Lett. 382, 318–324 (2003).
[CrossRef]

Kasemo, B.

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science 326, 1091–1094 (2009).
[CrossRef]

Langhammer, C.

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science 326, 1091–1094 (2009).
[CrossRef]

Larsson, E. M.

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science 326, 1091–1094 (2009).
[CrossRef]

Lee, W.

J. Hu, W. Lee, W. Cai, L. Tong, and H. Zeng, “Evolution of the optical spectra of an Ag/mesoporous SiO2 nanostructure heat-treated in air and H2 atmospheres,” Nanotechnology 18, 185710 (2007).
[CrossRef]

Li, C.

J. Hu, W. Cai, C. Li, Y. Gan, and L. Chen, “In situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum,” Appl. Phys. Lett. 86, 151915 (2005).
[CrossRef]

Li, Y.

J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009).
[CrossRef]

Li, Z.

C. Kan, W. Cai, Z. Li, G. Fu, and L. Zhang, “Reduction effect of pore wall and formation of Au nanowires inside monolithic mesoporous silica,” Chem. Phys. Lett. 382, 318–324 (2003).
[CrossRef]

Liu, F.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Liu, H.

J. A. Jiménez, H. Liu, and E. Fachini, “X-ray photoelectron spectroscopy of silver nanoparticles in phosphate glass,” Mater. Lett. 64, 2046–2048 (2010).

J. A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129, 1546–1554 (2009).
[CrossRef]

Liu, P.

J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009).
[CrossRef]

Liu, X.

H. Bi, W. Cai, H. Shi, and X. Liu, “Optical absorption of Ag oligomers dispersed within pores of mesoporous silica,” Chem. Phys. Lett. 357, 249–254 (2002).
[CrossRef]

Lysenko, S.

J. A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129, 1546–1554 (2009).
[CrossRef]

Maksimenko, L. S.

L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, “The features of surface plasmon resonance in gold cluster films,” Semicond. Phys. Quantum Electron. Optoelectron. 12, 129–134 (2009).

Matyash, I. E.

L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, “The features of surface plasmon resonance in gold cluster films,” Semicond. Phys. Quantum Electron. Optoelectron. 12, 129–134 (2009).

Nair, S. K.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008).
[CrossRef]

Pan, A.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Resto, O.

J. A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129, 1546–1554 (2009).
[CrossRef]

Rudenko, S. P.

L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, “The features of surface plasmon resonance in gold cluster films,” Semicond. Phys. Quantum Electron. Optoelectron. 12, 129–134 (2009).

Sarkar, D. K.

D. K. Sarkar, F. Cloutier, and M. A. El Khakani, “Electrical switching in sol-gel derived Ag-SiO2 nanocomposite thin films,” J. Appl. Phys. 97, 084302 (2005).
[CrossRef]

Serdega, B. K.

L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, “The features of surface plasmon resonance in gold cluster films,” Semicond. Phys. Quantum Electron. Optoelectron. 12, 129–134 (2009).

Shi, H.

H. Bi, W. Cai, H. Shi, and X. Liu, “Optical absorption of Ag oligomers dispersed within pores of mesoporous silica,” Chem. Phys. Lett. 357, 249–254 (2002).
[CrossRef]

Su, X.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Tapfer, L.

G. De, M. Gusso, and L. Tapfer, “Annealing behavior of silver, copper, and silver-copper nanoclusters in a silica matrix synthesized by the sol-gel technique,” J. Appl. Phys. 80, 6734–6739 (1996).
[CrossRef]

Thomas, S.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008).
[CrossRef]

Tong, L.

J. Hu, W. Lee, W. Cai, L. Tong, and H. Zeng, “Evolution of the optical spectra of an Ag/mesoporous SiO2 nanostructure heat-treated in air and H2 atmospheres,” Nanotechnology 18, 185710 (2007).
[CrossRef]

Treguer-Delapierre, M.

V. Hornebecq, M. Antonietti, T. Cardinal, and M. Treguer-Delapierre, “Stable silver nanoparticles immobilized in mesoporous silica,” Chem. Mater. 15, 1993–1999 (2003).
[CrossRef]

Varma, M. R.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008).
[CrossRef]

Wang, L.

J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009).
[CrossRef]

Yang, Z.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Zeng, H.

J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009).
[CrossRef]

J. Hu, W. Lee, W. Cai, L. Tong, and H. Zeng, “Evolution of the optical spectra of an Ag/mesoporous SiO2 nanostructure heat-treated in air and H2 atmospheres,” Nanotechnology 18, 185710 (2007).
[CrossRef]

Zhang, L.

C. Kan, W. Cai, Z. Li, G. Fu, and L. Zhang, “Reduction effect of pore wall and formation of Au nanowires inside monolithic mesoporous silica,” Chem. Phys. Lett. 382, 318–324 (2003).
[CrossRef]

W. Cai, L. Zhang, H. Zhong, and G. He, “Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption,” J. Mater. Res. 13, 2888–2895 (1998).
[CrossRef]

Zhao, L.

J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009).
[CrossRef]

Zheng, H.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Zhong, H.

W. Cai, L. Zhang, H. Zhong, and G. He, “Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption,” J. Mater. Res. 13, 2888–2895 (1998).
[CrossRef]

Zhu, Y.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Zoric, I.

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science 326, 1091–1094 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

J. Hu, W. Cai, C. Li, Y. Gan, and L. Chen, “In situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum,” Appl. Phys. Lett. 86, 151915 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment, ” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Chem. Mater. (1)

V. Hornebecq, M. Antonietti, T. Cardinal, and M. Treguer-Delapierre, “Stable silver nanoparticles immobilized in mesoporous silica,” Chem. Mater. 15, 1993–1999 (2003).
[CrossRef]

Chem. Phys. Lett. (2)

H. Bi, W. Cai, H. Shi, and X. Liu, “Optical absorption of Ag oligomers dispersed within pores of mesoporous silica,” Chem. Phys. Lett. 357, 249–254 (2002).
[CrossRef]

C. Kan, W. Cai, Z. Li, G. Fu, and L. Zhang, “Reduction effect of pore wall and formation of Au nanowires inside monolithic mesoporous silica,” Chem. Phys. Lett. 382, 318–324 (2003).
[CrossRef]

Coordin. Chem. Rev. (1)

Y. Li, N. Koshizaki, and W. P. Cai, “Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices,” Coordin. Chem. Rev. 255, 357–373 (2011).
[CrossRef]

Int. J. Hydrogen Energy (1)

S. Z. Baykara, “Experimental solar water thermolysis,” Int. J. Hydrogen Energy 29, 1459–1469 (2004).
[CrossRef]

J. Appl. Phys. (2)

G. De, M. Gusso, and L. Tapfer, “Annealing behavior of silver, copper, and silver-copper nanoclusters in a silica matrix synthesized by the sol-gel technique,” J. Appl. Phys. 80, 6734–6739 (1996).
[CrossRef]

D. K. Sarkar, F. Cloutier, and M. A. El Khakani, “Electrical switching in sol-gel derived Ag-SiO2 nanocomposite thin films,” J. Appl. Phys. 97, 084302 (2005).
[CrossRef]

J. Lumin. (1)

J. A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, and C. R. Cabrera, “Silver aggregates and twofold-coordinated tin centers in phosphate glass: a photoluminescence study,” J. Lumin. 129, 1546–1554 (2009).
[CrossRef]

J. Mater. Res. (1)

W. Cai, L. Zhang, H. Zhong, and G. He, “Annealing of mesoporous silica loaded with silver nanoparticles within its pores from isothermal sorption,” J. Mater. Res. 13, 2888–2895 (1998).
[CrossRef]

J. Phys. Chem. C (1)

J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, and P. Liu, “Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2,” J. Phys. Chem. C 113, 19039–19045 (2009).
[CrossRef]

Mater. Lett. (1)

J. A. Jiménez, H. Liu, and E. Fachini, “X-ray photoelectron spectroscopy of silver nanoparticles in phosphate glass,” Mater. Lett. 64, 2046–2048 (2010).

Nanotechnology (2)

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology 19, 075710 (2008).
[CrossRef]

J. Hu, W. Lee, W. Cai, L. Tong, and H. Zeng, “Evolution of the optical spectra of an Ag/mesoporous SiO2 nanostructure heat-treated in air and H2 atmospheres,” Nanotechnology 18, 185710 (2007).
[CrossRef]

Science (1)

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science 326, 1091–1094 (2009).
[CrossRef]

Semicond. Phys. Quantum Electron. Optoelectron. (1)

L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, “The features of surface plasmon resonance in gold cluster films,” Semicond. Phys. Quantum Electron. Optoelectron. 12, 129–134 (2009).

Other (1)

C. Chambers and A. K. Holliday, eds., Inorganic Chemistry (Butterworth, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Optical absorption of Ag (curve a), Au (curve b), and Cu (curve c), nanoparticles obtained by heating the corresponding metal salt SiO2 in H2 at 600 °C for 1 h.

Fig. 2.
Fig. 2.

Optical absorption evolution of metallic Ag, Cu, and Au-SiO2 after dry-air heat treatment at 600 °C for 0.5 h. (A) Ag-SiO2 (curve a) and a+inair (curve b). (B) Cu-SiO2 (curve a) and a+inair (curve b). (C) Au-SiO2 (curve a) and a+in air (curve b).

Fig. 3.
Fig. 3.

Optical absorption evolution of metal salts/SiO2 after dry-air and wet-air heat treatment at 600 °C for 0.5 h. (A) AgNO3/SiO2 in dry air (curve a) and wet air (curve b). (B) CuNO3/SiO2 in dry air (curve a) and wet air (curve b). (C) HAuCl4/SiO2 in dry air (curve a) and wet air (curve b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ag2O200°C2Ag+12O2.
SiOAg+.
H2OmesoporousSiO2H2+12O2.

Metrics