Abstract

Determination of particulate absorption in natural waters is often made by measuring the transmittance of samples on glass-fiber filters with the so-called quantitative filter technique (QFT). The accuracy of this technique is limited due to variations in the optical properties of the sample/filter composite, and due to uncertainties in the path-length amplification induced by multiple scattering inside the filter. Some variations in the optical properties of the sample/filter composite can be compensated by additional measurements of the filter’s reflectance (transmittance–reflectance method [T-R] [S. Tassan and G. M. Ferrari, Limnol. Oceanogr. [CrossRef]  40, 1358 (1995)]). We propose a different, rarely used approach, namely to measure the filter’s absorptance in the center of a large integrating sphere, to avoid problems with light losses due to scattering. A comparison with other QFTs includes a sensitivity study for different error sources and determination of path-length amplification factors for each measurement technique. Measurements with a point-source integrating-cavity absorption meter were therefore used to determine the true absorption. Filter to filter variability induced a much lower error in absorptance compared to a measured transmittance. This reduced error permits more accurate determination of the usually low absorption coefficient in the near IR spectral region. The error of the T-R method was lower than that of the transmittance measurement but slightly higher than that of an absorptance measurement. The mean path-length amplification was much higher for the absorptance measurement compared to the T-R method (4.50 versus 2.45) but was found to be largely independent of wavelength and optical density. With natural samples the path-length amplification was less variable for the absorptance measurement, reducing the overall error for absorption to less than ±14%, compared to ±25% for the T-R method.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shibata, A. A. Benson, and M. Calvin, “The absorption spectra of suspension of living micro-organisms,” Biochim. Biophys. Acta 15, 461–470 (1954).
    [CrossRef]
  2. K. Shibata, “Spectrophotometry of intact biological materials. absolute and relative measurements of their transmission, reflection, and absorption spectra,” J. Biochem. 45, 599–623 (1958).
  3. C. S. Yentsch, “A non-extractive method for the quantitative estimation of chlorophyll in algal cultures,” Nature 179, 1302–1304 (1957).
    [CrossRef]
  4. R. M. Pope, A. D. Weidemann, and E. S. Fry, “Integrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water,” Dyn. Atmos. Oceans 31, 307–320 (2000).
    [CrossRef]
  5. R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
    [CrossRef]
  6. B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.
  7. N. B. Nelson and B. B. Prézelin, “Calibration of an integrating sphere for determining the absorption coefficient of scattering suspension,” Appl. Opt. 32, 6710–6717 (1993).
    [CrossRef]
  8. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University, 1994).
  9. J. Ducha and S. Kubin, “Measurements of in vivo absorption spectra of microscopic algae using bleached cells as a reference sample,” Arch. Hydrobiol. Suppl. 49, 199–213 (1976).
  10. D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634–3646 (2003).
    [CrossRef]
  11. H. Haardt and H. Maske, “Specific in vivo absorption coefficient of chlorophyll a at 675 nm,” Limnol. Oceanogr. 32, 608–619 (1987).
    [CrossRef]
  12. M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
    [CrossRef]
  13. M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
    [CrossRef]
  14. D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
    [CrossRef]
  15. D. Stramski, M. Babin, and S. Wozniak, “Variations in the optical properties of terrigeneous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418–2433 (2007).
    [CrossRef]
  16. S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particle in the near-infrared spectral region,” Appl. Opt. 42, 4802–4810 (2003).
    [CrossRef]
  17. C. S. Yentsch, “Measurements of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7, 207–217 (1962).
    [CrossRef]
  18. H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94, 1255–1256(1967).
  19. B. G. Mitchell, “Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique,” Proc SPIE 1302, 137–148 (1990).
    [CrossRef]
  20. S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995).
    [CrossRef]
  21. S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res. 24, 757–774 (2002).
    [CrossRef]
  22. W. L. Butler, “Absorption of light by turbid samples,” J. Opt. Soc. Am. 52, 292–299 (1962).
    [CrossRef]
  23. B. G. Mitchell and D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. A 35, 639–663(1988).
    [CrossRef]
  24. A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
    [CrossRef]
  25. C. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38, 1321–1327 (1993).
    [CrossRef]
  26. B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: evidence of a unique equation to correct the path-length amplification on glass-fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
    [CrossRef]
  27. Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259, 51–61(2001).
    [CrossRef]
  28. C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43, 1649–1660 (1998).
    [CrossRef]
  29. J. C. Goldman and M. R. Dennet, “Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing,” J. Exp. Mar. Biol. Ecol. 86, 47–58 (1985).
    [CrossRef]
  30. D. Stramski, “Artifacts in measuring absorption spectra of phytoplankton collected on a filter,” Limnol. Oceanogr. 35, 1804–1809 (1990).
    [CrossRef]
  31. H. M. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44, 1139–1141 (1999).
    [CrossRef]
  32. I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAS in the UV waveband,” Limnol. Oceanogr. Methods 1, 1–9 (2003).
    [CrossRef]
  33. H. Maske and H. Haardt, “Quantitative in vivo absorption spectra of phytoplankton: detrital absorption and comparison with fluorescence excitation spectra,” Limnol. Oceanogr. 32, 620–633 (1987).
    [CrossRef]
  34. S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245(2005).
    [CrossRef]
  35. F. M. P. Saldanha-Correa, S. M. F. Gianesella, and J. J. Barrera-Alba, “A comparison of the retention capability among three different glass-fiber filters used for chlorophyll-a determinations,” Braz. J. Oceanogr. 52, 243–247 (2004).
    [CrossRef]
  36. R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5, 126–135 (2007).
    [CrossRef]
  37. S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical path-length amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20, 1699–1709 (1998).
    [CrossRef]
  38. S. E. Lohrenz, “A novel theoretical approach to correct for path-length amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22, 639–657 (2000).
    [CrossRef]

2007 (3)

R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[CrossRef]

D. Stramski, M. Babin, and S. Wozniak, “Variations in the optical properties of terrigeneous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418–2433 (2007).
[CrossRef]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5, 126–135 (2007).
[CrossRef]

2005 (1)

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245(2005).
[CrossRef]

2004 (3)

F. M. P. Saldanha-Correa, S. M. F. Gianesella, and J. J. Barrera-Alba, “A comparison of the retention capability among three different glass-fiber filters used for chlorophyll-a determinations,” Braz. J. Oceanogr. 52, 243–247 (2004).
[CrossRef]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

2003 (3)

2002 (2)

S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res. 24, 757–774 (2002).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

2001 (1)

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259, 51–61(2001).
[CrossRef]

2000 (2)

R. M. Pope, A. D. Weidemann, and E. S. Fry, “Integrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water,” Dyn. Atmos. Oceans 31, 307–320 (2000).
[CrossRef]

S. E. Lohrenz, “A novel theoretical approach to correct for path-length amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22, 639–657 (2000).
[CrossRef]

1999 (1)

H. M. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44, 1139–1141 (1999).
[CrossRef]

1998 (2)

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical path-length amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20, 1699–1709 (1998).
[CrossRef]

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43, 1649–1660 (1998).
[CrossRef]

1996 (1)

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: evidence of a unique equation to correct the path-length amplification on glass-fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
[CrossRef]

1995 (1)

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995).
[CrossRef]

1993 (2)

N. B. Nelson and B. B. Prézelin, “Calibration of an integrating sphere for determining the absorption coefficient of scattering suspension,” Appl. Opt. 32, 6710–6717 (1993).
[CrossRef]

C. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38, 1321–1327 (1993).
[CrossRef]

1990 (3)

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

D. Stramski, “Artifacts in measuring absorption spectra of phytoplankton collected on a filter,” Limnol. Oceanogr. 35, 1804–1809 (1990).
[CrossRef]

B. G. Mitchell, “Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique,” Proc SPIE 1302, 137–148 (1990).
[CrossRef]

1988 (1)

B. G. Mitchell and D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. A 35, 639–663(1988).
[CrossRef]

1987 (2)

H. Maske and H. Haardt, “Quantitative in vivo absorption spectra of phytoplankton: detrital absorption and comparison with fluorescence excitation spectra,” Limnol. Oceanogr. 32, 620–633 (1987).
[CrossRef]

H. Haardt and H. Maske, “Specific in vivo absorption coefficient of chlorophyll a at 675 nm,” Limnol. Oceanogr. 32, 608–619 (1987).
[CrossRef]

1985 (1)

J. C. Goldman and M. R. Dennet, “Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing,” J. Exp. Mar. Biol. Ecol. 86, 47–58 (1985).
[CrossRef]

1976 (1)

J. Ducha and S. Kubin, “Measurements of in vivo absorption spectra of microscopic algae using bleached cells as a reference sample,” Arch. Hydrobiol. Suppl. 49, 199–213 (1976).

1967 (1)

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94, 1255–1256(1967).

1962 (2)

C. S. Yentsch, “Measurements of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7, 207–217 (1962).
[CrossRef]

W. L. Butler, “Absorption of light by turbid samples,” J. Opt. Soc. Am. 52, 292–299 (1962).
[CrossRef]

1958 (1)

K. Shibata, “Spectrophotometry of intact biological materials. absolute and relative measurements of their transmission, reflection, and absorption spectra,” J. Biochem. 45, 599–623 (1958).

1957 (1)

C. S. Yentsch, “A non-extractive method for the quantitative estimation of chlorophyll in algal cultures,” Nature 179, 1302–1304 (1957).
[CrossRef]

1954 (1)

K. Shibata, A. A. Benson, and M. Calvin, “The absorption spectra of suspension of living micro-organisms,” Biochim. Biophys. Acta 15, 461–470 (1954).
[CrossRef]

Arbones, B.

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: evidence of a unique equation to correct the path-length amplification on glass-fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
[CrossRef]

Babin, M.

D. Stramski, M. Babin, and S. Wozniak, “Variations in the optical properties of terrigeneous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418–2433 (2007).
[CrossRef]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

Barrera-Alba, J. J.

F. M. P. Saldanha-Correa, S. M. F. Gianesella, and J. J. Barrera-Alba, “A comparison of the retention capability among three different glass-fiber filters used for chlorophyll-a determinations,” Braz. J. Oceanogr. 52, 243–247 (2004).
[CrossRef]

Benson, A. A.

K. Shibata, A. A. Benson, and M. Calvin, “The absorption spectra of suspension of living micro-organisms,” Biochim. Biophys. Acta 15, 461–470 (1954).
[CrossRef]

Blouin, F.

I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAS in the UV waveband,” Limnol. Oceanogr. Methods 1, 1–9 (2003).
[CrossRef]

Bricaud, A.

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Butler, W. L.

Calvin, M.

K. Shibata, A. A. Benson, and M. Calvin, “The absorption spectra of suspension of living micro-organisms,” Biochim. Biophys. Acta 15, 461–470 (1954).
[CrossRef]

Carder, K.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Cleveland, C. S.

C. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38, 1321–1327 (1993).
[CrossRef]

Cleveland, J.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Dennet, M. R.

J. C. Goldman and M. R. Dennet, “Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing,” J. Exp. Mar. Biol. Ecol. 86, 47–58 (1985).
[CrossRef]

Doerffer, R.

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5, 126–135 (2007).
[CrossRef]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[CrossRef]

Ducha, J.

J. Ducha and S. Kubin, “Measurements of in vivo absorption spectra of microscopic algae using bleached cells as a reference sample,” Arch. Hydrobiol. Suppl. 49, 199–213 (1976).

Ferrari, G.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Ferrari, G. M.

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particle in the near-infrared spectral region,” Appl. Opt. 42, 4802–4810 (2003).
[CrossRef]

S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res. 24, 757–774 (2002).
[CrossRef]

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical path-length amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20, 1699–1709 (1998).
[CrossRef]

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995).
[CrossRef]

Figueiras, F. G.

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: evidence of a unique equation to correct the path-length amplification on glass-fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
[CrossRef]

Finkel, Z. V.

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259, 51–61(2001).
[CrossRef]

Flatau, P. J.

D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

Fry, E. S.

R. M. Pope, A. D. Weidemann, and E. S. Fry, “Integrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water,” Dyn. Atmos. Oceans 31, 307–320 (2000).
[CrossRef]

Gianesella, S. M. F.

F. M. P. Saldanha-Correa, S. M. F. Gianesella, and J. J. Barrera-Alba, “A comparison of the retention capability among three different glass-fiber filters used for chlorophyll-a determinations,” Braz. J. Oceanogr. 52, 243–247 (2004).
[CrossRef]

Goldman, J. C.

J. C. Goldman and M. R. Dennet, “Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing,” J. Exp. Mar. Biol. Ecol. 86, 47–58 (1985).
[CrossRef]

Gons, H. J.

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245(2005).
[CrossRef]

Gould, R.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Haardt, H.

H. Haardt and H. Maske, “Specific in vivo absorption coefficient of chlorophyll a at 675 nm,” Limnol. Oceanogr. 32, 608–619 (1987).
[CrossRef]

H. Maske and H. Haardt, “Quantitative in vivo absorption spectra of phytoplankton: detrital absorption and comparison with fluorescence excitation spectra,” Limnol. Oceanogr. 32, 620–633 (1987).
[CrossRef]

Häse, C.

R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[CrossRef]

Irwin, A. J.

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259, 51–61(2001).
[CrossRef]

Kahru, M.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Kiefer, D. A.

B. G. Mitchell and D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. A 35, 639–663(1988).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University, 1994).

Kishino, M.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Kubin, S.

J. Ducha and S. Kubin, “Measurements of in vivo absorption spectra of microscopic algae using bleached cells as a reference sample,” Arch. Hydrobiol. Suppl. 49, 199–213 (1976).

Laurion, I.

I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAS in the UV waveband,” Limnol. Oceanogr. Methods 1, 1–9 (2003).
[CrossRef]

Lohrenz, S. E.

S. E. Lohrenz, “A novel theoretical approach to correct for path-length amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22, 639–657 (2000).
[CrossRef]

Maske, H.

H. Maske and H. Haardt, “Quantitative in vivo absorption spectra of phytoplankton: detrital absorption and comparison with fluorescence excitation spectra,” Limnol. Oceanogr. 32, 620–633 (1987).
[CrossRef]

H. Haardt and H. Maske, “Specific in vivo absorption coefficient of chlorophyll a at 675 nm,” Limnol. Oceanogr. 32, 608–619 (1987).
[CrossRef]

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Mitchell, B. G.

B. G. Mitchell, “Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique,” Proc SPIE 1302, 137–148 (1990).
[CrossRef]

B. G. Mitchell and D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. A 35, 639–663(1988).
[CrossRef]

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Moisan, T.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Moore, L.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Nelson, N.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Nelson, N. B.

Peters, S. W. M.

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245(2005).
[CrossRef]

Phinney, D.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Piskozub, J.

Pope, R. M.

R. M. Pope, A. D. Weidemann, and E. S. Fry, “Integrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water,” Dyn. Atmos. Oceans 31, 307–320 (2000).
[CrossRef]

Prézelin, B. B.

Reynolds, R.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Roesler, C. S.

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43, 1649–1660 (1998).
[CrossRef]

Röttgers, R.

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5, 126–135 (2007).
[CrossRef]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[CrossRef]

Roy, S.

I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAS in the UV waveband,” Limnol. Oceanogr. Methods 1, 1–9 (2003).
[CrossRef]

Saldanha-Correa, F. M. P.

F. M. P. Saldanha-Correa, S. M. F. Gianesella, and J. J. Barrera-Alba, “A comparison of the retention capability among three different glass-fiber filters used for chlorophyll-a determinations,” Braz. J. Oceanogr. 52, 243–247 (2004).
[CrossRef]

Shibata, K.

K. Shibata, “Spectrophotometry of intact biological materials. absolute and relative measurements of their transmission, reflection, and absorption spectra,” J. Biochem. 45, 599–623 (1958).

K. Shibata, A. A. Benson, and M. Calvin, “The absorption spectra of suspension of living micro-organisms,” Biochim. Biophys. Acta 15, 461–470 (1954).
[CrossRef]

Simis, S. G. H.

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245(2005).
[CrossRef]

Sosik, H.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Sosik, H. M.

H. M. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44, 1139–1141 (1999).
[CrossRef]

Stramski, D.

D. Stramski, M. Babin, and S. Wozniak, “Variations in the optical properties of terrigeneous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418–2433 (2007).
[CrossRef]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634–3646 (2003).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

D. Stramski, “Artifacts in measuring absorption spectra of phytoplankton collected on a filter,” Limnol. Oceanogr. 35, 1804–1809 (1990).
[CrossRef]

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Tassan, S.

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particle in the near-infrared spectral region,” Appl. Opt. 42, 4802–4810 (2003).
[CrossRef]

S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res. 24, 757–774 (2002).
[CrossRef]

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical path-length amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20, 1699–1709 (1998).
[CrossRef]

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995).
[CrossRef]

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Trees, C.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Trüper, H. G.

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94, 1255–1256(1967).

Vodacek, A.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Weidemann, A.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Weidemann, A. D.

R. M. Pope, A. D. Weidemann, and E. S. Fry, “Integrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water,” Dyn. Atmos. Oceans 31, 307–320 (2000).
[CrossRef]

C. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38, 1321–1327 (1993).
[CrossRef]

Wieland, J.

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Wozniak, S.

D. Stramski, M. Babin, and S. Wozniak, “Variations in the optical properties of terrigeneous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418–2433 (2007).
[CrossRef]

Wozniak, S. B.

D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

Yentsch, C. S.

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94, 1255–1256(1967).

C. S. Yentsch, “Measurements of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7, 207–217 (1962).
[CrossRef]

C. S. Yentsch, “A non-extractive method for the quantitative estimation of chlorophyll in algal cultures,” Nature 179, 1302–1304 (1957).
[CrossRef]

Zapata, M.

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: evidence of a unique equation to correct the path-length amplification on glass-fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
[CrossRef]

Appl. Opt. (3)

Arch. Hydrobiol. Suppl. (1)

J. Ducha and S. Kubin, “Measurements of in vivo absorption spectra of microscopic algae using bleached cells as a reference sample,” Arch. Hydrobiol. Suppl. 49, 199–213 (1976).

Biochim. Biophys. Acta (1)

K. Shibata, A. A. Benson, and M. Calvin, “The absorption spectra of suspension of living micro-organisms,” Biochim. Biophys. Acta 15, 461–470 (1954).
[CrossRef]

Braz. J. Oceanogr. (1)

F. M. P. Saldanha-Correa, S. M. F. Gianesella, and J. J. Barrera-Alba, “A comparison of the retention capability among three different glass-fiber filters used for chlorophyll-a determinations,” Braz. J. Oceanogr. 52, 243–247 (2004).
[CrossRef]

Deep-Sea Res. A (1)

B. G. Mitchell and D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. A 35, 639–663(1988).
[CrossRef]

Dyn. Atmos. Oceans (1)

R. M. Pope, A. D. Weidemann, and E. S. Fry, “Integrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water,” Dyn. Atmos. Oceans 31, 307–320 (2000).
[CrossRef]

J. Bacteriol. (1)

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94, 1255–1256(1967).

J. Biochem. (1)

K. Shibata, “Spectrophotometry of intact biological materials. absolute and relative measurements of their transmission, reflection, and absorption spectra,” J. Biochem. 45, 599–623 (1958).

J. Exp. Mar. Biol. Ecol. (2)

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259, 51–61(2001).
[CrossRef]

J. C. Goldman and M. R. Dennet, “Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing,” J. Exp. Mar. Biol. Ecol. 86, 47–58 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Plankton Res. (3)

S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res. 24, 757–774 (2002).
[CrossRef]

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical path-length amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20, 1699–1709 (1998).
[CrossRef]

S. E. Lohrenz, “A novel theoretical approach to correct for path-length amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22, 639–657 (2000).
[CrossRef]

Limnol. Oceanogr. (14)

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43, 1649–1660 (1998).
[CrossRef]

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

C. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38, 1321–1327 (1993).
[CrossRef]

D. Stramski, “Artifacts in measuring absorption spectra of phytoplankton collected on a filter,” Limnol. Oceanogr. 35, 1804–1809 (1990).
[CrossRef]

H. M. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44, 1139–1141 (1999).
[CrossRef]

H. Maske and H. Haardt, “Quantitative in vivo absorption spectra of phytoplankton: detrital absorption and comparison with fluorescence excitation spectra,” Limnol. Oceanogr. 32, 620–633 (1987).
[CrossRef]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245(2005).
[CrossRef]

H. Haardt and H. Maske, “Specific in vivo absorption coefficient of chlorophyll a at 675 nm,” Limnol. Oceanogr. 32, 608–619 (1987).
[CrossRef]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002).
[CrossRef]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
[CrossRef]

D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
[CrossRef]

D. Stramski, M. Babin, and S. Wozniak, “Variations in the optical properties of terrigeneous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418–2433 (2007).
[CrossRef]

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40, 1358–1368 (1995).
[CrossRef]

C. S. Yentsch, “Measurements of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7, 207–217 (1962).
[CrossRef]

Limnol. Oceanogr. Methods (3)

R. Röttgers, C. Häse, and R. Doerffer, “Determination of particulate absorption of microalgae using a point source integrating cavity absorption meter,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[CrossRef]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5, 126–135 (2007).
[CrossRef]

I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAS in the UV waveband,” Limnol. Oceanogr. Methods 1, 1–9 (2003).
[CrossRef]

Mar. Ecol. Prog. Ser. (1)

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: evidence of a unique equation to correct the path-length amplification on glass-fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
[CrossRef]

Nature (1)

C. S. Yentsch, “A non-extractive method for the quantitative estimation of chlorophyll in algal cultures,” Nature 179, 1302–1304 (1957).
[CrossRef]

Proc SPIE (1)

B. G. Mitchell, “Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique,” Proc SPIE 1302, 137–148 (1990).
[CrossRef]

Other (2)

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University, 1994).

B. G. Mitchell, A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, eds., NASA/TM-2000-209966, NASA Goddard Space Flight Center, Greenbelt, Md., 2000, pp. 125–153.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Optical density, ODf, as a function of wavelength for different GF/F filters (Whatman) showing contamination (dirty filter) with an absorption maximum around 420 nm; (b) the ODf of uncombusted and combusted GF-5 filters.

Fig. 2.
Fig. 2.

Optical density of empty glass-fiber filters, ODf, as a function of wavelength. Wet filters were soaked in water and then left drying for 10 to 40 min (dot-dashed lines). (a) Measurements against air of dry and wet filters in transmittance (upper six curves) and reflectance mode (lower two curves); (b) the same filters measured in absorptance mode inside an integrating sphere. Note the differences in the y axis.

Fig. 3.
Fig. 3.

Variation in optical density as a function of wavelength for filters from the same filter batch depicted as standard deviation, σOD, for multiple measurements of (a) dry filters, (b) wet filters, and (c) filters prepared from an algal culture sample, measured as transmittance, T, as absorptance, A, and by the T-R method.

Fig. 4.
Fig. 4.

Raw OD versus wavelength spectra of an algal culture and a natural sample measured inside an integrating sphere (absorptance mode). Shown are filters of both samples with (a) a low filter load, and (b) an approximately 10× higher filter load, together with the spectrum of a wet reference filter. No corrections were applied. Significant absorptance is observed in the NIR spectral region for the natural sample.

Fig. 5.
Fig. 5.

Example for the influence of the path-length amplification on the absorption coefficient determined for different optical setups. The true spectral absorption coefficient as a function of wavelength of an algal culture, a, is shown together with theoretical absorption coefficients aβ=1 (i.e., not corrected for path-length amplification) for measurements in modes A, T, and R and for T-R (see text for details).

Fig. 6.
Fig. 6.

Filter load experiment 1. (a) ODf as a function of wavelength measured as absorptance, A, and transmittance, T, with increasing filtered volume, V. (b) Calculated theoretical absorption coefficients without correction for path-length amplification, aβ=1. The real absorption coefficient, a, measured using a PSICAM is shown for comparison. (c) aAβ=1 plotted against aTβ=1. (d) aAβ=1 plotted against a. Linear regression statistics are shown. Arrows denote response to increasing filter load.

Fig. 7.
Fig. 7.

Filter load experiment 2. (a) ODf as a function of wavelength measured as absorptance, A, for increasing filtered volume from 10 to 60 ml. (b) Calculated theoretical absorption coefficient without correction for path-length amplification, aAβ=1. The real absorption coefficient, a, measured using a PSICAM, is shown for comparison. (c) aAβ=1 plotted against aTβ=1, aRβ=1, and aT-Rβ=1, for the samples with 10, 15, and 30 ml only. (d) aAβ=1, aTβ=1, and aT-Rβ=1 plotted against a. The lower curves for each mode are those with the highest filter loads of 45 and 60 ml.

Fig. 8.
Fig. 8.

Theoretical absorption coefficient, aβ=1, measured as absorptance, A, and by the T-R method, plotted against the real absorption coefficient, a, (a) for algal cultures (A: n=23; T-R: n=15) and (b) for natural samples (A: n=31; T-R: n=34). Indicated are the mean slopes (i.e., the mean amplification factor). The data are normalized to the maximum of a of each data set to compensate for differences in the maximum absorption of each sample.

Tables (1)

Tables Icon

Table 1. Standard Deviations of the Optical Density, σOD, for Various Error Sources Given for the Full Wavelength Range and the Mean Over All Wavelengthsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a=2.303(ODsODr)F/V*1/β [m1],
β=6.475(ODsODr)26.474(ODsODr)+4.765.

Metrics