Abstract

A free-space optical crossbar network integrated in a single block of LiNbO3 crystal is proposed, which consists of stages of 2×2 switches making use of the electro-optic effect of crystal and in-between routing devices for permutation based on double refraction and internal double reflection on interfaces. Two basic configurations are suggested. A control algorithm for the crossbar network is discussed, which may control a nonblocking interconnection between any input and output. The integrated crossbar network is low energy loss, nonblocking, easy to assemble, and insensitive to environment. A 3×3 crossbar network is designed and the experiment is demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. McCaughan and G. A. Bogert, “4×4Ti:LiNbO3 integrated optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985).
    [CrossRef]
  2. T. Kirihara, M. Ogawa, H. Inoue, H. Kodera, and K. Ishida, “Lossless and low-crosstalk characteristics in an InP-based 4×4 optical switch with integrated single-stage optical amplifiers,” IEEE Photon. Technol. Lett. 6, 218–221 (1994).
    [CrossRef]
  3. M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Sillica-based 8×8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightwave Technol. 17, 771–781 (1999).
    [CrossRef]
  4. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 19, 371–379 (2001).
    [CrossRef]
  5. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol. 20, 993–1000 (2002).
    [CrossRef]
  6. A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, and A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
    [CrossRef]
  7. W. Stork, “Optical crossbar,” Optik 76, 173–175 (1987).
  8. D. O. Harris, “Acousto-optic photonic switch,” Opt. Lett. 14, 1177–1179 (1989).
    [CrossRef]
  9. M. E. Marhic and S. G. Lee, “Mirror-folded free-space crossbars with holographic implementation,” Appl. Opt. 32, 6438–6444 (1993).
    [CrossRef]
  10. Y. Wu, L. Liu, and Z. Wang, “Optical crossbar elements used for switching networks,” Appl. Opt. 33, 175–178 (1994).
    [CrossRef]
  11. S. Reinhorn, Y. Amitai, A. A. Friesim, A. W. Lohmann, and S. Gorodeisky, “Compact optical crossbar switch,” Appl. Opt. 36, 1039–1044 (1997).
    [CrossRef]
  12. N. Cohen, D. Mendlovic, B. Leibner, and N. Konforti, “Compact polarization-based all-optical interconnection systems with growth capability,” Appl. Opt. 37, 5479–5487 (1998).
    [CrossRef]
  13. Z. Song, L. Liu, D. Liu, and Z. Song, “Packagable free-space optical crossbar network based on bypass-exchange switch,” Optik 114, 491–496 (2003).
    [CrossRef]
  14. Z. Song, L. Liu, H. Ren, and Z. Luan, “Electro-optic bypass-exchange switch integrated in a single LiNbO3 crystal,” J. Opt. A 6, 229–234 (2004).
    [CrossRef]
  15. Z. Song, L. Liu, H. Ren, Y. Zhou, and J. Zhang, “Integrated optical bypass-exchange switch in a single block of LiNbO3 crystal,” Proc. SPIE 5201, 190–198 (2003).
    [CrossRef]

2004 (1)

Z. Song, L. Liu, H. Ren, and Z. Luan, “Electro-optic bypass-exchange switch integrated in a single LiNbO3 crystal,” J. Opt. A 6, 229–234 (2004).
[CrossRef]

2003 (2)

Z. Song, L. Liu, H. Ren, Y. Zhou, and J. Zhang, “Integrated optical bypass-exchange switch in a single block of LiNbO3 crystal,” Proc. SPIE 5201, 190–198 (2003).
[CrossRef]

Z. Song, L. Liu, D. Liu, and Z. Song, “Packagable free-space optical crossbar network based on bypass-exchange switch,” Optik 114, 491–496 (2003).
[CrossRef]

2002 (1)

2001 (1)

1999 (1)

1998 (1)

1997 (1)

1994 (2)

T. Kirihara, M. Ogawa, H. Inoue, H. Kodera, and K. Ishida, “Lossless and low-crosstalk characteristics in an InP-based 4×4 optical switch with integrated single-stage optical amplifiers,” IEEE Photon. Technol. Lett. 6, 218–221 (1994).
[CrossRef]

Y. Wu, L. Liu, and Z. Wang, “Optical crossbar elements used for switching networks,” Appl. Opt. 33, 175–178 (1994).
[CrossRef]

1993 (1)

1989 (1)

1987 (2)

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, and A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[CrossRef]

W. Stork, “Optical crossbar,” Optik 76, 173–175 (1987).

1985 (1)

L. McCaughan and G. A. Bogert, “4×4Ti:LiNbO3 integrated optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985).
[CrossRef]

Amitai, Y.

Bogert, G. A.

L. McCaughan and G. A. Bogert, “4×4Ti:LiNbO3 integrated optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985).
[CrossRef]

Cohen, N.

Friesim, A. A.

Goh, T.

Gorodeisky, S.

Harris, D. O.

Hattori, K.

Himeno, A.

Inoue, H.

T. Kirihara, M. Ogawa, H. Inoue, H. Kodera, and K. Ishida, “Lossless and low-crosstalk characteristics in an InP-based 4×4 optical switch with integrated single-stage optical amplifiers,” IEEE Photon. Technol. Lett. 6, 218–221 (1994).
[CrossRef]

Ishida, K.

T. Kirihara, M. Ogawa, H. Inoue, H. Kodera, and K. Ishida, “Lossless and low-crosstalk characteristics in an InP-based 4×4 optical switch with integrated single-stage optical amplifiers,” IEEE Photon. Technol. Lett. 6, 218–221 (1994).
[CrossRef]

Jenkins, B. K.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, and A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[CrossRef]

Kasahara, R.

Kato, K.

Kawachi, M.

Kirihara, T.

T. Kirihara, M. Ogawa, H. Inoue, H. Kodera, and K. Ishida, “Lossless and low-crosstalk characteristics in an InP-based 4×4 optical switch with integrated single-stage optical amplifiers,” IEEE Photon. Technol. Lett. 6, 218–221 (1994).
[CrossRef]

Kodera, H.

T. Kirihara, M. Ogawa, H. Inoue, H. Kodera, and K. Ishida, “Lossless and low-crosstalk characteristics in an InP-based 4×4 optical switch with integrated single-stage optical amplifiers,” IEEE Photon. Technol. Lett. 6, 218–221 (1994).
[CrossRef]

Konforti, N.

Lee, S. G.

Leibner, B.

Liu, D.

Z. Song, L. Liu, D. Liu, and Z. Song, “Packagable free-space optical crossbar network based on bypass-exchange switch,” Optik 114, 491–496 (2003).
[CrossRef]

Liu, L.

Z. Song, L. Liu, H. Ren, and Z. Luan, “Electro-optic bypass-exchange switch integrated in a single LiNbO3 crystal,” J. Opt. A 6, 229–234 (2004).
[CrossRef]

Z. Song, L. Liu, D. Liu, and Z. Song, “Packagable free-space optical crossbar network based on bypass-exchange switch,” Optik 114, 491–496 (2003).
[CrossRef]

Z. Song, L. Liu, H. Ren, Y. Zhou, and J. Zhang, “Integrated optical bypass-exchange switch in a single block of LiNbO3 crystal,” Proc. SPIE 5201, 190–198 (2003).
[CrossRef]

Y. Wu, L. Liu, and Z. Wang, “Optical crossbar elements used for switching networks,” Appl. Opt. 33, 175–178 (1994).
[CrossRef]

Lohmann, A. W.

Luan, Z.

Z. Song, L. Liu, H. Ren, and Z. Luan, “Electro-optic bypass-exchange switch integrated in a single LiNbO3 crystal,” J. Opt. A 6, 229–234 (2004).
[CrossRef]

Marhic, M. E.

Matsui, S.

McCaughan, L.

L. McCaughan and G. A. Bogert, “4×4Ti:LiNbO3 integrated optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985).
[CrossRef]

Mendlovic, D.

Nagase, R.

Ogawa, M.

T. Kirihara, M. Ogawa, H. Inoue, H. Kodera, and K. Ishida, “Lossless and low-crosstalk characteristics in an InP-based 4×4 optical switch with integrated single-stage optical amplifiers,” IEEE Photon. Technol. Lett. 6, 218–221 (1994).
[CrossRef]

Ohmori, Y.

Okuno, M.

Raghavendra, C. S.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, and A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[CrossRef]

Reinhorn, S.

Ren, H.

Z. Song, L. Liu, H. Ren, and Z. Luan, “Electro-optic bypass-exchange switch integrated in a single LiNbO3 crystal,” J. Opt. A 6, 229–234 (2004).
[CrossRef]

Z. Song, L. Liu, H. Ren, Y. Zhou, and J. Zhang, “Integrated optical bypass-exchange switch in a single block of LiNbO3 crystal,” Proc. SPIE 5201, 190–198 (2003).
[CrossRef]

Sawchuk, A. A.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, and A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[CrossRef]

Song, Z.

Z. Song, L. Liu, H. Ren, and Z. Luan, “Electro-optic bypass-exchange switch integrated in a single LiNbO3 crystal,” J. Opt. A 6, 229–234 (2004).
[CrossRef]

Z. Song, L. Liu, D. Liu, and Z. Song, “Packagable free-space optical crossbar network based on bypass-exchange switch,” Optik 114, 491–496 (2003).
[CrossRef]

Z. Song, L. Liu, D. Liu, and Z. Song, “Packagable free-space optical crossbar network based on bypass-exchange switch,” Optik 114, 491–496 (2003).
[CrossRef]

Z. Song, L. Liu, H. Ren, Y. Zhou, and J. Zhang, “Integrated optical bypass-exchange switch in a single block of LiNbO3 crystal,” Proc. SPIE 5201, 190–198 (2003).
[CrossRef]

Stork, W.

W. Stork, “Optical crossbar,” Optik 76, 173–175 (1987).

Sugita, A.

Varma, A.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, and A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[CrossRef]

Wang, Z.

Wu, Y.

Yanagisawa, M.

Yasu, M.

Zhang, J.

Z. Song, L. Liu, H. Ren, Y. Zhou, and J. Zhang, “Integrated optical bypass-exchange switch in a single block of LiNbO3 crystal,” Proc. SPIE 5201, 190–198 (2003).
[CrossRef]

Zhou, Y.

Z. Song, L. Liu, H. Ren, Y. Zhou, and J. Zhang, “Integrated optical bypass-exchange switch in a single block of LiNbO3 crystal,” Proc. SPIE 5201, 190–198 (2003).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

L. McCaughan and G. A. Bogert, “4×4Ti:LiNbO3 integrated optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985).
[CrossRef]

Computer (1)

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, and A. Varma, “Optical crossbar networks,” Computer 20(6), 50–60 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Kirihara, M. Ogawa, H. Inoue, H. Kodera, and K. Ishida, “Lossless and low-crosstalk characteristics in an InP-based 4×4 optical switch with integrated single-stage optical amplifiers,” IEEE Photon. Technol. Lett. 6, 218–221 (1994).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. A (1)

Z. Song, L. Liu, H. Ren, and Z. Luan, “Electro-optic bypass-exchange switch integrated in a single LiNbO3 crystal,” J. Opt. A 6, 229–234 (2004).
[CrossRef]

Opt. Lett. (1)

Optik (2)

W. Stork, “Optical crossbar,” Optik 76, 173–175 (1987).

Z. Song, L. Liu, D. Liu, and Z. Song, “Packagable free-space optical crossbar network based on bypass-exchange switch,” Optik 114, 491–496 (2003).
[CrossRef]

Proc. SPIE (1)

Z. Song, L. Liu, H. Ren, Y. Zhou, and J. Zhang, “Integrated optical bypass-exchange switch in a single block of LiNbO3 crystal,” Proc. SPIE 5201, 190–198 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Two configurations of an integrated bypass-exchange switch: (a) incident beams normal to the input surface of the crystal and (b) incident beams tilted to the input surface of the crystal.

Fig. 2.
Fig. 2.

Configuration of a 3×3 integrated crossbar network with normal incidence of beams.

Fig. 3.
Fig. 3.

Dependences of (a) H and (b) l normalized by h on the angle θ.

Fig. 4.
Fig. 4.

Configuration of a 4×4 integrated crossbar network with oblique incidence of beams.

Fig. 5.
Fig. 5.

Input of a 4×4 integrated crossbar network with oblique incidence of beams.

Fig. 6.
Fig. 6.

Dependences of the angle Δoe on the angle θ and the angle αoi.

Fig. 7.
Fig. 7.

Dependences of Ho normalized by h on the angle θ and the angle αoi.

Fig. 8.
Fig. 8.

Dependences of He normalized by h on the angle θ and the angle αoi.

Tables (4)

Tables Icon

Table 1. Presupposed States of the Switches That a Signal Passes through from Input Channel i to Output Channel j (K[i,j]) When the Second, Third, … (n1)th Input Signals, Respectively, Are o-Beams

Tables Icon

Table 2. Presupposed States of the Switches That a Signal Passes through from Input Channel i to Output Channel j (K[i,j]) When the Second, Third, … (n1)th Input Signals, Respectively, Are e-Beams

Tables Icon

Table 3. Switch States, n=3, When the Interconnections Are 123312 and the Second Input Signal Is an e-Beam (Cm[i,j])a

Tables Icon

Table 4. Switch States, n=4, When the Interconnections Are 12344321 and the Second and Third Input Signals Are o-Beams (Cm[i,j])

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

{(fm,1)(fm+1+1,1)(fm,0)(fm+1,0)mis odd,
{(fm,1)(fm+1,1)(fm,0)(fm+11,0)mis even.
H=hcosθ[tan(θ+δ)tanθ],
l=h/cosθ,
y=h/sinθ,
{h[(2N3)tanθ+2(N1)tan(θ+δ)1tanθ]<L<h[(4N3)tanθ+1tanθ]45°θ<90°h[(2N3)tanθ+2(N2)tan(θ+δ)+1tanθ]<L<h[(4N3)tanθ+1tanθ]26°<θ<45°,
tanδ=(no2ne2)cos2θsin(2θ)no2(no2ne2)cos2θcos(2θ).
Δoe=|sin1[no(no2ne2)sinθsin2θsin(θαoβ)ne2cos2θ+no2sin2θ+sinαoi]αoi|.
l=h/cosθ,
y=h/sinγ,
γ=θαoβ,
Ho=nohcosθ[tan(θ+δ)tanθ]no2sin2αoi,
He=hsin(π/2θδ)[tan(θ+δ)tanθ]cosαeβ,
{h[(N1)tanθ+(N2)tan(θ+δ)1tanγ]<L<h[(2N1)tanθ+1tanγ]90°θγ<90°+θh[(N3)tanθ+(N2)tan(θ+δ)+1tanγ]<L<h[(2N1)tanθ+1tanγ]0°γ<90°θ,
tanαe=2(ne2cos2θ+no2sin2θ)(ne2no2)sin2θ+2ne2cotθ.
i=1j=1,K[i,j]=K[1,1]=C1[1,1]C2[1,1]Cm[1,1]=1111j2,K[i,j]=K[1,1]2j3i=nj=n,K[i,j]=K[n,n]=C1[i,j]C2[i,j]Cm[i,j]=1111jn1,K[i,j]=K[n,n]2(nj)1
m=1,ifp=1,f1=iifp=0,f1=i1,
m=2,4,6,ifpC1[i,j]C2[i,j]Cm1[i,j]=1,fm=fm1+1ifpC1[i,j]C2[i,j]Cm1[i,j]=0,fm=fm1,
m=3,5,7,ifpC1[i,j]C2[i,j]Cm1[i,j]=1,fm=fm1ifpC1[i,j]C2[i,j]Cm1[i,j]=0,fm=fm11.
K[i,j]=K[2,n]=C1[2,n]C2[2,n]Cm[2,n]=1000.
K[i,j]=K[n1,1]=C1[n1,1]C2[n1,1]Cm[n1,1]=1000.
j=i,K[i,j]=K[i,i]=C1[i,i]C2[i,i]Cm[i,i]=1111ji1,K[i,j]=K[i,i]2(ij)1j>i,K[i,j]=K[i,i]2(ji).
j=i,K[i,j]=K[i,i]=C1[i,i]C2[i,i]Cm[i,i]=1111ji+1,K[i,j]=K[i,i]2(ji)1j<i,K[i,j]=K[i,i]2(ij).

Metrics