Abstract

We have proposed and demonstrated a holographic security storage system that is implemented with a shift multiplexing technique. The security function of this storage system is achieved by using a microdiffuser (MD) for random phase encoding of the reference beams. The apparatus of random phase encoding in this system offers an additional and flexible function during the recording processes. The system can generate holographic security memory or nonsecurity holographic memory via using the MD or not. The storage capacity and the average signal-to-noise value of the security storage system are 16bits/μm2 and 3.5, respectively. Lateral shifting selectivity in this holographic security storage system is theoretically analyzed and experimentally investigated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
  2. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
    [CrossRef]
  3. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 250  gigapixels/in.2,” Opt. Lett. 26, 444–446 (2001).
    [CrossRef]
  4. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    [CrossRef]
  5. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. D. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
    [CrossRef]
  6. C. C. Sun and W. C. Su, “Three-dimensional shifting selectively of random phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
    [CrossRef]
  7. C. Denz, K.-O. Muller, F. Visinka, and T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” Proc. SPIE 3802, 142–147(1999).
    [CrossRef]
  8. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    [CrossRef]
  9. W. C. Su and C. H. Lin, “Three-dimensional shifting selectivity of decryption phase mask in double random phase encoding holographic memory,” Opt. Commun. 241, 29–41 (2004).
    [CrossRef]
  10. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimentional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
    [CrossRef]
  11. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293(1999).
    [CrossRef]
  12. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
    [CrossRef]
  13. O. Matoba, Y. Yokohama, M. Miura, K. Nitta, and T. Yoshimura, “Reflection-type holographic disk memory with random phase shift multiplexing,” Appl. Opt. 45, 3270–3274 (2006).
    [CrossRef]
  14. W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Opt. 43, 1728–1733 (2004).
    [CrossRef]
  15. Y. Takeda, Y. Oshida, and Y. Miyamura, “Random phase shifters for Fourier transformed holograms,” Appl. Opt. 11, 818–822 (1972).
    [CrossRef]
  16. C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
    [CrossRef]
  17. O. Matoba and B. Javidi, “Secure holographic memory by double-random polarization encryption,” Appl. Opt. 43, 2915–2919 (2004).
    [CrossRef]
  18. M. Yamazaki and J. Ohtsubo, “Optimization of encrypted holograms in optical security systems,” Opt. Eng. 40, 132–137 (2001).
    [CrossRef]
  19. G. J. Steckman, A. Pu, and D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387–3394 (2001).
    [CrossRef]
  20. C. C. Sun, W. C. Su, B. Wang, and A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
    [CrossRef]
  21. W. C. Su and C. C. Sun, “Encryption-selectable holographic storage in LiNbO3 with angle multiplexing,” Microw. Opt. Technol. Lett. 42, 227–230 (2004).
    [CrossRef]
  22. S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
    [CrossRef]
  23. C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184–1185 (2003).
    [CrossRef]
  24. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
    [CrossRef]
  25. C. Moser and D. Psaltis, “Holographic memory with localized recording,” Appl. Opt. 40, 3909–3914 (2001).
    [CrossRef]
  26. C. C. Sun, M. S. Tsaur, W. C. Su, B. Wang, and E. T. Chiou, “Two-dimensional shifting tolerance of a volume-holographic correlator,” Appl. Opt. 38, 4316–4324 (1999).
    [CrossRef]
  27. C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
    [CrossRef]

2006 (2)

2005 (1)

2004 (5)

2003 (2)

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184–1185 (2003).
[CrossRef]

2001 (6)

2000 (1)

C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

1999 (4)

1998 (1)

1996 (1)

1995 (1)

1972 (1)

1970 (1)

Barbastathis, G.

Bashaw, M. C.

Bjornson, E.

Burckhardt, C. B.

Burr, G. W.

Caulfield, H. J.

H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Chen, W. Z.

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Chen, Y. C.

Chiou, A. E. T.

C. C. Sun, W. C. Su, B. Wang, and A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

Chiou, E. T.

Coufal, H.

Denz, C.

C. Denz, K.-O. Muller, F. Visinka, and T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” Proc. SPIE 3802, 142–147(1999).
[CrossRef]

Fujimura, R.

Heanue, J. F.

Hesselink, L.

Hoffnagle, J. A.

Horimai, H.

Hsu, K. Y.

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Ichimura, S.

Javidi, B.

Jefferson, C. M.

Joseph, J.

Jurich, M.

Kuroda, K.

Kwan, D.

Levene, M.

Li, J.

Lin, C. H.

W. C. Su and C. H. Lin, “Three-dimensional shifting selectivity of decryption phase mask in double random phase encoding holographic memory,” Opt. Commun. 241, 29–41 (2004).
[CrossRef]

Lin, S. H.

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Macfarlane, R. M.

Matoba, O.

Miura, M.

Miyamura, Y.

Moser, C.

Muller, K.-O.

C. Denz, K.-O. Muller, F. Visinka, and T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” Proc. SPIE 3802, 142–147(1999).
[CrossRef]

Nitta, K.

Ohtsubo, J.

M. Yamazaki and J. Ohtsubo, “Optimization of encrypted holograms in optical security systems,” Opt. Eng. 40, 132–137 (2001).
[CrossRef]

Okas, R.

Orlov, S. S.

Oshida, Y.

Ouyang, Y.

W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Opt. 43, 1728–1733 (2004).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Phillips, W.

Psaltis, D.

Pu, A.

Shelby, R. M.

Shimura, T.

Sincerbox, G.

H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Singh, K.

Snyder, R.

Steckman, G. J.

Su, W. C.

W. C. Su and C. H. Lin, “Three-dimensional shifting selectivity of decryption phase mask in double random phase encoding holographic memory,” Opt. Commun. 241, 29–41 (2004).
[CrossRef]

W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Opt. 43, 1728–1733 (2004).
[CrossRef]

W. C. Su and C. C. Sun, “Encryption-selectable holographic storage in LiNbO3 with angle multiplexing,” Microw. Opt. Technol. Lett. 42, 227–230 (2004).
[CrossRef]

C. C. Sun and W. C. Su, “Three-dimensional shifting selectively of random phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, and A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

C. C. Sun, M. S. Tsaur, W. C. Su, B. Wang, and E. T. Chiou, “Two-dimensional shifting tolerance of a volume-holographic correlator,” Appl. Opt. 38, 4316–4324 (1999).
[CrossRef]

Sun, C. C.

W. C. Su and C. C. Sun, “Encryption-selectable holographic storage in LiNbO3 with angle multiplexing,” Microw. Opt. Technol. Lett. 42, 227–230 (2004).
[CrossRef]

W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Opt. 43, 1728–1733 (2004).
[CrossRef]

C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184–1185 (2003).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, and A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

C. C. Sun and W. C. Su, “Three-dimensional shifting selectively of random phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

C. C. Sun, M. S. Tsaur, W. C. Su, B. Wang, and E. T. Chiou, “Two-dimensional shifting tolerance of a volume-holographic correlator,” Appl. Opt. 38, 4316–4324 (1999).
[CrossRef]

Sundaram, P.

Takashima, Y.

Takeda, Y.

Tan, X.

Tan, X. D.

Tsaur, M. S.

Tschudi, T.

C. Denz, K.-O. Muller, F. Visinka, and T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” Proc. SPIE 3802, 142–147(1999).
[CrossRef]

Unnikrishnan, G.

Visinka, F.

C. Denz, K.-O. Muller, F. Visinka, and T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” Proc. SPIE 3802, 142–147(1999).
[CrossRef]

Wang, B.

C. C. Sun, W. C. Su, B. Wang, and A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

C. C. Sun, M. S. Tsaur, W. C. Su, B. Wang, and E. T. Chiou, “Two-dimensional shifting tolerance of a volume-holographic correlator,” Appl. Opt. 38, 4316–4324 (1999).
[CrossRef]

Whang, W. T.

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Yamazaki, M.

M. Yamazaki and J. Ohtsubo, “Optimization of encrypted holograms in optical security systems,” Opt. Eng. 40, 132–137 (2001).
[CrossRef]

Yokohama, Y.

Yoshimura, T.

Appl. Opt. (15)

G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
[CrossRef]

C. C. Sun, M. S. Tsaur, W. C. Su, B. Wang, and E. T. Chiou, “Two-dimensional shifting tolerance of a volume-holographic correlator,” Appl. Opt. 38, 4316–4324 (1999).
[CrossRef]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[CrossRef]

G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
[CrossRef]

O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293(1999).
[CrossRef]

C. C. Sun and W. C. Su, “Three-dimensional shifting selectively of random phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
[CrossRef]

G. J. Steckman, A. Pu, and D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387–3394 (2001).
[CrossRef]

C. Moser and D. Psaltis, “Holographic memory with localized recording,” Appl. Opt. 40, 3909–3914 (2001).
[CrossRef]

W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Opt. 43, 1728–1733 (2004).
[CrossRef]

O. Matoba and B. Javidi, “Secure holographic memory by double-random polarization encryption,” Appl. Opt. 43, 2915–2919 (2004).
[CrossRef]

S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
[CrossRef]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
[CrossRef]

C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
[CrossRef]

Y. Takeda, Y. Oshida, and Y. Miyamura, “Random phase shifters for Fourier transformed holograms,” Appl. Opt. 11, 818–822 (1972).
[CrossRef]

O. Matoba, Y. Yokohama, M. Miura, K. Nitta, and T. Yoshimura, “Reflection-type holographic disk memory with random phase shift multiplexing,” Appl. Opt. 45, 3270–3274 (2006).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

W. C. Su and C. C. Sun, “Encryption-selectable holographic storage in LiNbO3 with angle multiplexing,” Microw. Opt. Technol. Lett. 42, 227–230 (2004).
[CrossRef]

Opt. Commun. (3)

C. C. Sun, W. C. Su, B. Wang, and A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

W. C. Su and C. H. Lin, “Three-dimensional shifting selectivity of decryption phase mask in double random phase encoding holographic memory,” Opt. Commun. 241, 29–41 (2004).
[CrossRef]

Opt. Eng. (3)

M. Yamazaki and J. Ohtsubo, “Optimization of encrypted holograms in optical security systems,” Opt. Eng. 40, 132–137 (2001).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184–1185 (2003).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

C. Denz, K.-O. Muller, F. Visinka, and T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” Proc. SPIE 3802, 142–147(1999).
[CrossRef]

Other (1)

H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Security holographic storage implemented with a MD.

Fig. 2.
Fig. 2.

Experiment setup for a security collinear holographic system: SF, spatial filter; L, lens; M, mirror; PBS, polarization beam splitter; HP, half-wave plate; MD, microdiffuser; H, hologram.

Fig. 3.
Fig. 3.

Theoretical model for analysis of shifting selectivity in security collinear holograms.

Fig. 4.
Fig. 4.

Theoretical and experimental results of lateral selectivity for security collinear holograms.

Fig. 5.
Fig. 5.

Input image: chessboard pattern with 20×20 pixels.

Fig. 6.
Fig. 6.

Spatial distribution of 100 stored holograms within the recording material. There are a total of 100 holograms in 10 tracks. Each track contains 10 shift-multiplexed holograms.

Fig. 7.
Fig. 7.

Retrieved images of the stored patterns in this collinear holographic storage system. (a)–(e) Retrieved images by using the same MD locating at the correct position. (f) Diffraction results of encryption storage without using the correct MD.

Fig. 8.
Fig. 8.

SNR of retrieved images for the security collinear holographic storage system.

Fig. 9.
Fig. 9.

(a), (b) Retrieved images of nonencryption storage implemented with the same system.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Rw(x3,y3)=d/2d/2d/2d/2Awexp[jϕ(x1,y1)]×exp(jkr1)dx1dy1,
H(x3,y3)=|Rw(x3,y3)|2+|I{S(xo+Δxo,yo)}|2+Rw*(x3,y3)·I{S(xo+Δxo,yo)}+Rw(x3,y3)·I*{S(xo+Δxo,yo)},
Rr(x3,y3)=d/2d/2d/2d/2Arexp[jϕ(x2,y2)]×exp(jkr2)dx2dy2,
DT/2T/2Rr·H·exp[jk(T2r)]drT/2T/2ly/2ly/2lx/2lx/2dy/2dy/2dx/2dx/2I{S(xo+Δxo,yo)}|Ar||Aw|×exp{jk2z0[(x3x1Δx)2+(y3y1Δy)2+(x3x1)2+(y3y1)2]}×exp[jk(T2r)]dx1dy1dx3dy3dr,
I|D|2|lx/2lx/2ej2π(x0λf+Δxλz0)x3dx3dx/2dx/2ej2π(Δxλz0)x1dx1ly/2ly/2ej2π(y0λf+Δyλz0)x3dy3dy/2dy/2ej2π(Δyλz0)y1dy1×w/2w/2S(x0+Δx0,y0)dx0dy0t2cosαt2cosα1cosαejk(t2cosα)ej2π(1λcosα)z3dz3|2sinc2(dxΔxλz0)sinc2(dyΔyλz0)sinc2(tλcos2α)|S(Δx0fΔxz0,fΔyz0)|2,
N=MΔx·Δy,
SNR=μ1μ0(σ12+σ02),

Metrics