Abstract

In this paper complete photonic bandgap (PBG) and iso-frequency contours (IFCs) of two-dimensional modified annular photonic crystals (MAPC) for four different configurations are numerically studied and calculated by applying plane wave expansion method. The effects of opto-geometric parameters of the designed unit-cell structures are clearly demonstrated in terms of opening frequency gaps and appearing tilted band curves. Optimal structures with large PBGs are reported. The absolute gap can be increased to a maximum value of Δω/ω=0.1766(2πc/a), where a is the lattice constant and c is the speed of light. The incorporation of additional parameters inside the unit cell of photonic crystal enables an extra degree of freedom for controlling the flow of light even in the absence of structural defects. The finite-difference time-domain method is utilized to depict the MAPC’s light deflection and guiding characteristics. These proposed structures are likely to be promising candidates for applications that require polarization insensitivity due to providing large complete PBGs and possessing special IFCs.

© 2012 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription