Abstract

An optimized angle scanning method is presented for array sample detection in a surface plasmon resonance biosensor. It provides a way to find the optimal rotation axis in the prism to resolve the drifting problem of the light incidence point on samples in the plane prism-coupling mode. The detection of array samples can be achieved by the translation of the prism along a particular direction. The validity of this method is theoretically analyzed and demonstrated by experiments.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. M. Schasfoort and A. J. Tudos, eds., Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).
  2. B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [CrossRef]
  3. D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987/88).
    [CrossRef]
  4. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261–267 (1995).
  5. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  6. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
    [CrossRef]
  7. L. A. Lyon, W. D. Holliway, and M. J. Natan, “An improved surface plasmon resonance imaging apparatus,” Rev. Sci. Instrum. 70, 2076–2081 (1999).
    [CrossRef]
  8. A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
    [CrossRef]
  9. K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
    [CrossRef]

2000

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[CrossRef]

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

1999

L. A. Lyon, W. D. Holliway, and M. J. Natan, “An improved surface plasmon resonance imaging apparatus,” Rev. Sci. Instrum. 70, 2076–2081 (1999).
[CrossRef]

1995

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261–267 (1995).

1988

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

1987

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987/88).
[CrossRef]

1983

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

1968

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Arwin, H.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Brown, R. G.

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987/88).
[CrossRef]

Cullen, D. C.

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987/88).
[CrossRef]

Harris, R. D.

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261–267 (1995).

Holliway, W. D.

L. A. Lyon, W. D. Holliway, and M. J. Natan, “An improved surface plasmon resonance imaging apparatus,” Rev. Sci. Instrum. 70, 2076–2081 (1999).
[CrossRef]

Johansen, K.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Knoll, W.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Liedberg, B.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Lipson, S. G.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[CrossRef]

Lowe, C. R.

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987/88).
[CrossRef]

Lundstrom, I.

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Lundström, I.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Lyon, L. A.

L. A. Lyon, W. D. Holliway, and M. J. Natan, “An improved surface plasmon resonance imaging apparatus,” Rev. Sci. Instrum. 70, 2076–2081 (1999).
[CrossRef]

Natan, M. J.

L. A. Lyon, W. D. Holliway, and M. J. Natan, “An improved surface plasmon resonance imaging apparatus,” Rev. Sci. Instrum. 70, 2076–2081 (1999).
[CrossRef]

Notcovich, A. G.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Wilkinson, J. S.

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261–267 (1995).

Zhuk, V.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[CrossRef]

Appl. Phys. Lett.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[CrossRef]

Biosensors

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987/88).
[CrossRef]

Nature

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Rev. Sci. Instrum.

L. A. Lyon, W. D. Holliway, and M. J. Natan, “An improved surface plasmon resonance imaging apparatus,” Rev. Sci. Instrum. 70, 2076–2081 (1999).
[CrossRef]

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Sens. Actuators

B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Sens. Actuators B

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261–267 (1995).

Z. Naturforsch. A

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Other

R. B. M. Schasfoort and A. J. Tudos, eds., Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).

Supplementary Material (4)

» Media 1: AVI (2493 KB)     
» Media 2: AVI (2571 KB)     
» Media 3: AVI (2581 KB)     
» Media 4: AVI (2806 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Prism-coupling modes in SPR angle scanning. (a) Cylinder prism-coupling mode. (b) Plane prism-coupling mode.

Fig. 2.
Fig. 2.

Schematic of prism rotation and array samples.

Fig. 3.
Fig. 3.

(a) Geometric method to determine the optimal position of rotation axis. (b) Simulation of the positions that light rays incident on BC with W as rotation center.

Fig. 4.
Fig. 4.

Schematic of drift value when the prism rotated clockwise an angle θ with W as rotation center.

Fig. 5.
Fig. 5.

Simulation of drifting values of the light incidence point with the optimal position, point G, point O, and point A as the rotation center.

Fig. 6.
Fig. 6.

Optimal translation direction of prism for array samples detection.

Fig. 7.
Fig. 7.

Schematic of the measurement system.

Fig. 8.
Fig. 8.

Video of incidence point drifting situation when θ is in the range of 00.8rad for different rotation axes. (a) Point G is the rotation center (Media 1). (b) Point O is the rotation center (Media 2). (c) Point A is the rotation center (Media 3). (d) The optimal rotation center (Media 4).

Fig. 9.
Fig. 9.

Measure of drifting values with the optimal position, point G, point O, and point A as the rotation center.

Fig. 10.
Fig. 10.

Schematic of the sample cell.

Fig. 11.
Fig. 11.

Reflection curve of water when the rotation center is set at the optimal position and point G.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

OD=acosαcosα(acos2αMWtanθ)sinα(acos2αMWtanθ)tanϕ,
sinθ=nsin(ϕα).
MW=acosα(cos2α+sinαcosαtanϕ1)tan{arcsin[nsin(ϕα)]}(cosα+sinαtanϕ),
MWMO=cos2α+sinαcosαtanϕ1sinαtan{arcsin[nsin(ϕα)]}(cosα+sinαtanϕ).
MW|optimal=acosα(cos2α+sinαcosαtanφ01)tan{arcsin[nsin(φ0α)]}(cosα+sinαtanφ0),
MWMO|optimal=cos2α+sinαcosαtanφ01sinαtan{arcsin[nsin(φ0α)]}(cosα+sinαtanφ0).
ODoptimal=3.25223.2522(120.5252tanθ){1+tan[π4+arcsin(sinθ1.5163)]}.
ODO=3.25223.2524(1tanθ){1+tan[π4+arcsin(sinθ1.5163)]},
ODA=3.25223.2522(112cosθ){1+tan[π4+arcsin(sinθ1.5163)]},
ODG=3.25223.2528(3tanθ1cosθ){1+tan[π4+arcsin(sinθ1.5163)]}.
1tanβ=tanαMWMO|optimal,

Metrics