Abstract

A 1.86 W cw single-frequency 1319 nm laser was produced by using an 885 nm-pumped Nd:YAG crystal with a compact four-mirror ring cavity, for the first time to our knowledge. The Nd:YAG produced a slope efficiency of 21% and an optical-to-optical efficiency of 18% with respect to the absorbed diode pump power. A near-diffraction-limited beam with M2=1.2 was achieved under the maximum output power.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, J. Chen, W. D. Chen, and Z. Q. Chen, “Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser,” Appl. Opt. 46, 384–388 (2007).
    [CrossRef]
  2. K. J. Williams, R. D. Esman, L. Goldberg, J. F. Weller, and M. Dagenais, “Active offset phase locking of Nd:YAG 1319 nm non-planar ring lasers to 34 GHz,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper THC2.
  3. R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
    [CrossRef]
  4. J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
    [CrossRef]
  5. X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
    [CrossRef]
  6. M. Frede, R. Wilhelm, and D. Kracht, “250 W end-pumped Nd:YAG laser with direct pumping into the upper laser level,” Opt. Lett. 31, 3618–3619 (2006).
    [CrossRef]
  7. N. Pavel, V. Lupei, and T. Taira, “1.34 mm efficient laser emission in highly-doped Nd:YAG under 885 nm diode pumping,” Opt. Express 13, 7948–7953 (2005).
    [CrossRef]
  8. P. A. Crump and R. Martinsen, “Advances in high efficiency diode laser pump sources suitable for pumping Nd:YAG systems,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWD5.
  9. P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, and J. E. Williams, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
    [CrossRef]
  10. C. Q. Gao, M. W. Gao, Z. F. Lin, Y. S. Zhang, X. Y. Zhang, and L. N. Zhu, “LD pumped monolithic non-planar ring resonator single frequency lasers,” Chinese J. Lasers 36, 1704–1709 (2009).
    [CrossRef]
  11. G. J. Hall and A. I. Ferguson, “Generation of single-frequency radiation at 1064, 1319, and 659.5 nm with an all-solid-state, out-of-plane Nd:YAG ring laser,” Opt. Lett. 19, 557–559 (1994).
    [CrossRef]
  12. W. F. Zhao, W. Hou, L. Guo, G. Li, X. C. Lin, and J. M. Li, “12 W high efficiency single frequency ring laser,” Laser Phys. Lett. 7, 210–212 (2010).
    [CrossRef]
  13. J. Q. Zhao, Y. Z. Wang, B. Q. Yao, and Y. L. Ju, “High efficiency, single-frequency continuous wave Nd:YVO4/YVO4 ring laser,” Laser Phys. Lett. 7, 135–138 (2010).
    [CrossRef]
  14. B. G. Zhang, J. Q. Yao, D. G. Xu, Y. Z. Yu, T. Wang, J. Chen, and P. Wang, “A new method to measure the ultrashort thermal focal length of high-power solid-state laser,” Proc. SPIE 4914, 460–463 (2002).
    [CrossRef]
  15. W. A. Clarkson and D. C. Hanna, “Efficient Nd:YAG laser end pumped by a 20 W diode-laser bar,” Opt. Lett. 21, 869–871 (1996).
    [CrossRef]
  16. L. McDonagh and R. Wallenstein, “Low-noise 62 W cw intracavity-doubled TEM00Nd:YVO4 green laser pumped at 888 nm,” Opt. Lett. 32, 802–804 (2007).
    [CrossRef]

2010

J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
[CrossRef]

W. F. Zhao, W. Hou, L. Guo, G. Li, X. C. Lin, and J. M. Li, “12 W high efficiency single frequency ring laser,” Laser Phys. Lett. 7, 210–212 (2010).
[CrossRef]

J. Q. Zhao, Y. Z. Wang, B. Q. Yao, and Y. L. Ju, “High efficiency, single-frequency continuous wave Nd:YVO4/YVO4 ring laser,” Laser Phys. Lett. 7, 135–138 (2010).
[CrossRef]

2009

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

C. Q. Gao, M. W. Gao, Z. F. Lin, Y. S. Zhang, X. Y. Zhang, and L. N. Zhu, “LD pumped monolithic non-planar ring resonator single frequency lasers,” Chinese J. Lasers 36, 1704–1709 (2009).
[CrossRef]

2007

2006

2005

2002

B. G. Zhang, J. Q. Yao, D. G. Xu, Y. Z. Yu, T. Wang, J. Chen, and P. Wang, “A new method to measure the ultrashort thermal focal length of high-power solid-state laser,” Proc. SPIE 4914, 460–463 (2002).
[CrossRef]

2001

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

1996

1994

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, and J. E. Williams, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

G. J. Hall and A. I. Ferguson, “Generation of single-frequency radiation at 1064, 1319, and 659.5 nm with an all-solid-state, out-of-plane Nd:YAG ring laser,” Opt. Lett. 19, 557–559 (1994).
[CrossRef]

Chen, J.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, J. Chen, W. D. Chen, and Z. Q. Chen, “Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser,” Appl. Opt. 46, 384–388 (2007).
[CrossRef]

B. G. Zhang, J. Q. Yao, D. G. Xu, Y. Z. Yu, T. Wang, J. Chen, and P. Wang, “A new method to measure the ultrashort thermal focal length of high-power solid-state laser,” Proc. SPIE 4914, 460–463 (2002).
[CrossRef]

Chen, W. D.

Chen, Z. Q.

Clarkson, W. A.

Crump, P. A.

P. A. Crump and R. Martinsen, “Advances in high efficiency diode laser pump sources suitable for pumping Nd:YAG systems,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWD5.

Dagenais, M.

K. J. Williams, R. D. Esman, L. Goldberg, J. F. Weller, and M. Dagenais, “Active offset phase locking of Nd:YAG 1319 nm non-planar ring lasers to 34 GHz,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper THC2.

Ding, X.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Duanmu, Q. D.

J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
[CrossRef]

Esman, R. D.

K. J. Williams, R. D. Esman, L. Goldberg, J. F. Weller, and M. Dagenais, “Active offset phase locking of Nd:YAG 1319 nm non-planar ring lasers to 34 GHz,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper THC2.

Ferguson, A. I.

Frede, M.

Gao, C. Q.

C. Q. Gao, M. W. Gao, Z. F. Lin, Y. S. Zhang, X. Y. Zhang, and L. N. Zhu, “LD pumped monolithic non-planar ring resonator single frequency lasers,” Chinese J. Lasers 36, 1704–1709 (2009).
[CrossRef]

Gao, M. W.

C. Q. Gao, M. W. Gao, Z. F. Lin, Y. S. Zhang, X. Y. Zhang, and L. N. Zhu, “LD pumped monolithic non-planar ring resonator single frequency lasers,” Chinese J. Lasers 36, 1704–1709 (2009).
[CrossRef]

Gavrilovic, P.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, and J. E. Williams, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

Goldberg, L.

K. J. Williams, R. D. Esman, L. Goldberg, J. F. Weller, and M. Dagenais, “Active offset phase locking of Nd:YAG 1319 nm non-planar ring lasers to 34 GHz,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper THC2.

Goldring, S.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Guo, L.

J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
[CrossRef]

W. F. Zhao, W. Hou, L. Guo, G. Li, X. C. Lin, and J. M. Li, “12 W high efficiency single frequency ring laser,” Laser Phys. Lett. 7, 210–212 (2010).
[CrossRef]

Hall, G. J.

Hanna, D. C.

Hou, W.

W. F. Zhao, W. Hou, L. Guo, G. Li, X. C. Lin, and J. M. Li, “12 W high efficiency single frequency ring laser,” Laser Phys. Lett. 7, 210–212 (2010).
[CrossRef]

Huang, C. H.

Huang, L. X.

Jackel, S.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Ju, Y. L.

J. Q. Zhao, Y. Z. Wang, B. Q. Yao, and Y. L. Ju, “High efficiency, single-frequency continuous wave Nd:YVO4/YVO4 ring laser,” Laser Phys. Lett. 7, 135–138 (2010).
[CrossRef]

Kracht, D.

Lavi, R.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Lebiush, E.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Li, G.

W. F. Zhao, W. Hou, L. Guo, G. Li, X. C. Lin, and J. M. Li, “12 W high efficiency single frequency ring laser,” Laser Phys. Lett. 7, 210–212 (2010).
[CrossRef]

Li, J. M.

W. F. Zhao, W. Hou, L. Guo, G. Li, X. C. Lin, and J. M. Li, “12 W high efficiency single frequency ring laser,” Laser Phys. Lett. 7, 210–212 (2010).
[CrossRef]

J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
[CrossRef]

Lin, X. C.

J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
[CrossRef]

W. F. Zhao, W. Hou, L. Guo, G. Li, X. C. Lin, and J. M. Li, “12 W high efficiency single frequency ring laser,” Laser Phys. Lett. 7, 210–212 (2010).
[CrossRef]

Lin, Z. F.

C. Q. Gao, M. W. Gao, Z. F. Lin, Y. S. Zhang, X. Y. Zhang, and L. N. Zhu, “LD pumped monolithic non-planar ring resonator single frequency lasers,” Chinese J. Lasers 36, 1704–1709 (2009).
[CrossRef]

Lupei, V.

Ma, J. L.

J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
[CrossRef]

Martinsen, R.

P. A. Crump and R. Martinsen, “Advances in high efficiency diode laser pump sources suitable for pumping Nd:YAG systems,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWD5.

McDonagh, L.

O’Neill, M. S.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, and J. E. Williams, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

Pavel, N.

Singh, S.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, and J. E. Williams, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

Taira, T.

Tal, A.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Tzuk, Y.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Wallenstein, R.

Wang, P.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

B. G. Zhang, J. Q. Yao, D. G. Xu, Y. Z. Yu, T. Wang, J. Chen, and P. Wang, “A new method to measure the ultrashort thermal focal length of high-power solid-state laser,” Proc. SPIE 4914, 460–463 (2002).
[CrossRef]

Wang, R.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Wang, T.

B. G. Zhang, J. Q. Yao, D. G. Xu, Y. Z. Yu, T. Wang, J. Chen, and P. Wang, “A new method to measure the ultrashort thermal focal length of high-power solid-state laser,” Proc. SPIE 4914, 460–463 (2002).
[CrossRef]

Wang, Y. Z.

J. Q. Zhao, Y. Z. Wang, B. Q. Yao, and Y. L. Ju, “High efficiency, single-frequency continuous wave Nd:YVO4/YVO4 ring laser,” Laser Phys. Lett. 7, 135–138 (2010).
[CrossRef]

Wei, Y.

Weller, J. F.

K. J. Williams, R. D. Esman, L. Goldberg, J. F. Weller, and M. Dagenais, “Active offset phase locking of Nd:YAG 1319 nm non-planar ring lasers to 34 GHz,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper THC2.

Wen, W. Q.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Wilhelm, R.

Williams, J. E.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, and J. E. Williams, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

Williams, K. J.

K. J. Williams, R. D. Esman, L. Goldberg, J. F. Weller, and M. Dagenais, “Active offset phase locking of Nd:YAG 1319 nm non-planar ring lasers to 34 GHz,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper THC2.

Xiong, B.

J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
[CrossRef]

Xu, D. G.

B. G. Zhang, J. Q. Yao, D. G. Xu, Y. Z. Yu, T. Wang, J. Chen, and P. Wang, “A new method to measure the ultrashort thermal focal length of high-power solid-state laser,” Proc. SPIE 4914, 460–463 (2002).
[CrossRef]

Yao, B. Q.

J. Q. Zhao, Y. Z. Wang, B. Q. Yao, and Y. L. Ju, “High efficiency, single-frequency continuous wave Nd:YVO4/YVO4 ring laser,” Laser Phys. Lett. 7, 135–138 (2010).
[CrossRef]

Yao, J. Q.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

B. G. Zhang, J. Q. Yao, D. G. Xu, Y. Z. Yu, T. Wang, J. Chen, and P. Wang, “A new method to measure the ultrashort thermal focal length of high-power solid-state laser,” Proc. SPIE 4914, 460–463 (2002).
[CrossRef]

Yu, X. Y.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Yu, Y. Z.

B. G. Zhang, J. Q. Yao, D. G. Xu, Y. Z. Yu, T. Wang, J. Chen, and P. Wang, “A new method to measure the ultrashort thermal focal length of high-power solid-state laser,” Proc. SPIE 4914, 460–463 (2002).
[CrossRef]

Zarrabi, J. H.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, and J. E. Williams, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

Zhang, B. G.

B. G. Zhang, J. Q. Yao, D. G. Xu, Y. Z. Yu, T. Wang, J. Chen, and P. Wang, “A new method to measure the ultrashort thermal focal length of high-power solid-state laser,” Proc. SPIE 4914, 460–463 (2002).
[CrossRef]

Zhang, G.

Zhang, H.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Zhang, L.

J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
[CrossRef]

Zhang, X. Y.

C. Q. Gao, M. W. Gao, Z. F. Lin, Y. S. Zhang, X. Y. Zhang, and L. N. Zhu, “LD pumped monolithic non-planar ring resonator single frequency lasers,” Chinese J. Lasers 36, 1704–1709 (2009).
[CrossRef]

Zhang, Y. S.

C. Q. Gao, M. W. Gao, Z. F. Lin, Y. S. Zhang, X. Y. Zhang, and L. N. Zhu, “LD pumped monolithic non-planar ring resonator single frequency lasers,” Chinese J. Lasers 36, 1704–1709 (2009).
[CrossRef]

Zhao, J. Q.

J. Q. Zhao, Y. Z. Wang, B. Q. Yao, and Y. L. Ju, “High efficiency, single-frequency continuous wave Nd:YVO4/YVO4 ring laser,” Laser Phys. Lett. 7, 135–138 (2010).
[CrossRef]

Zhao, P. F.

J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
[CrossRef]

Zhao, W. F.

W. F. Zhao, W. Hou, L. Guo, G. Li, X. C. Lin, and J. M. Li, “12 W high efficiency single frequency ring laser,” Laser Phys. Lett. 7, 210–212 (2010).
[CrossRef]

Zhu, H. Y.

Zhu, L. N.

C. Q. Gao, M. W. Gao, Z. F. Lin, Y. S. Zhang, X. Y. Zhang, and L. N. Zhu, “LD pumped monolithic non-planar ring resonator single frequency lasers,” Chinese J. Lasers 36, 1704–1709 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Gavrilovic, M. S. O’Neill, J. H. Zarrabi, S. Singh, and J. E. Williams, “High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3 μm,” Appl. Phys. Lett. 65, 1620–1622 (1994).
[CrossRef]

Chinese J. Lasers

C. Q. Gao, M. W. Gao, Z. F. Lin, Y. S. Zhang, X. Y. Zhang, and L. N. Zhu, “LD pumped monolithic non-planar ring resonator single frequency lasers,” Chinese J. Lasers 36, 1704–1709 (2009).
[CrossRef]

Laser Phys. Lett.

W. F. Zhao, W. Hou, L. Guo, G. Li, X. C. Lin, and J. M. Li, “12 W high efficiency single frequency ring laser,” Laser Phys. Lett. 7, 210–212 (2010).
[CrossRef]

J. Q. Zhao, Y. Z. Wang, B. Q. Yao, and Y. L. Ju, “High efficiency, single-frequency continuous wave Nd:YVO4/YVO4 ring laser,” Laser Phys. Lett. 7, 135–138 (2010).
[CrossRef]

J. L. Ma, B. Xiong, L. Guo, P. F. Zhao, L. Zhang, X. C. Lin, J. M. Li, and Q. D. Duanmu, “Low heat and high efficiency Nd:GdVO4 laser pumped by 913 nm,” Laser Phys. Lett. 7, 579–582 (2010).
[CrossRef]

Opt. Commun.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

B. G. Zhang, J. Q. Yao, D. G. Xu, Y. Z. Yu, T. Wang, J. Chen, and P. Wang, “A new method to measure the ultrashort thermal focal length of high-power solid-state laser,” Proc. SPIE 4914, 460–463 (2002).
[CrossRef]

Other

K. J. Williams, R. D. Esman, L. Goldberg, J. F. Weller, and M. Dagenais, “Active offset phase locking of Nd:YAG 1319 nm non-planar ring lasers to 34 GHz,” in Optical Fiber Communication, OSA Technical Digest (Optical Society of America, 1990), paper THC2.

P. A. Crump and R. Martinsen, “Advances in high efficiency diode laser pump sources suitable for pumping Nd:YAG systems,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWD5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the single-frequency laser.

Fig. 2.
Fig. 2.

Absorbed pump power and absorption rate versus input power at 885 nm.

Fig. 3.
Fig. 3.

Beam radius of the TEM00 mode in the crystal versus thermal focal length.

Fig. 4.
Fig. 4.

Output power at 1319 nm.

Fig. 5.
Fig. 5.

Output laser signal from the confocal FP interferometer driven by a sawtooth voltage signal.

Fig. 6.
Fig. 6.

Beam quality factor measurement.

Metrics