Abstract

We report a high-spatial-resolution and long-range distributed temperature sensor through optimizing differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA). In DPP-BOTDA, the differential signal suffers from a signal-to-noise ratio (SNR) reduction with respect to the original signals, and for a fixed pulse-width difference the SNR reduction increases with the pulse width. Through reducing the pulse width to a transient regime (near to or less than the phonon lifetime) to decrease the SNR reduction after the differential process, the optimized 8/8.2ns pulse pair is applied to realize a 2 cm spatial resolution, where a pulse generator with a 150 ps fall-time is used to ensure the effective resolution of DPP-BOTDA. In the experiment, a 2 cm spatial-resolution hot-spot detection with a 2 °C temperature accuracy is demonstrated over a 2 km sensing fiber.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
    [CrossRef]
  2. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
    [CrossRef]
  3. S. M. Maughan, H. H. Kee, and T. P. Newson, “57 km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331–333 (2001).
    [CrossRef]
  4. X. Bao, D. J. Webb, and D. A. Jackon, “22 km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett. 18, 552–554 (1993).
    [CrossRef]
  5. M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
    [CrossRef]
  6. H. Naruse and M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38, 6516–6521 (1999).
    [CrossRef]
  7. X. Bao, A. W. Brown, M. DeMerchant, and J. Smith, “Characterization of the Brillouin gain/loss linewidth for single mode fibers using very short pulses,” Opt. Lett. 24, 510–512(1999).
    [CrossRef]
  8. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20 mm spatial resolution,” J. Lightwave Technol. 25, 381–386 (2007).
    [CrossRef]
  9. T. Sperber, A. Eyal, M. Tur, and L. Thevenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18, 8671–8679 (2010).
    [CrossRef]
  10. K. Kishda, C. H. Li, and K. Nishiguchi, “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE 5855, 559–562 (2005).
    [CrossRef]
  11. F. Wang, X. Bao, L. Chen, Y. Li, J. Snoddy, and X. Zhang, “Using pulse with dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor,” Opt. Lett. 33, 2707–2709 (2008).
    [CrossRef]
  12. Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
    [CrossRef]
  13. L. Thevenaz and S. F. Mafang, “Distributed fiber sensing using Brillouin echoes,” Proc. SPIE 7004, 70043N (2008).
    [CrossRef]
  14. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
    [CrossRef]
  15. K. Y. Song, S. Chin, N. Primerov, and L. Thevenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28, 2062–2067 (2010).
    [CrossRef]
  16. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
    [CrossRef]
  17. Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13 mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
    [CrossRef]
  18. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28, 2993–3003 (2010).
    [CrossRef]
  19. Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin loss-based distributed fiber sensor,” Appl. Opt. 49, 5020–5025 (2010).
    [CrossRef]
  20. R. W. Boyd, Nonlinear Optics, 4th ed. (Academic, 2008).

2010 (4)

2009 (1)

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13 mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
[CrossRef]

2008 (3)

2007 (2)

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[CrossRef]

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20 mm spatial resolution,” J. Lightwave Technol. 25, 381–386 (2007).
[CrossRef]

2006 (1)

2005 (1)

K. Kishda, C. H. Li, and K. Nishiguchi, “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE 5855, 559–562 (2005).
[CrossRef]

2001 (1)

1999 (2)

1997 (1)

1996 (1)

1993 (2)

Adachi, S.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[CrossRef]

Bao, X.

Beugnot, J.-C.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 4th ed. (Academic, 2008).

Brown, A. W.

Brown, K.

Chen, L.

Chin, S.

Colpitts, B. G.

DeMerchant, M.

Dong, Y.

Eyal, A.

Farhadiroushan, M.

Foaleng, S. M.

Handerek, V. A.

He, Z.

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13 mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
[CrossRef]

Horiguchi, T.

Hotate, K.

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13 mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
[CrossRef]

Jackon, D. A.

Kee, H. H.

Kishda, K.

K. Kishda, C. H. Li, and K. Nishiguchi, “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE 5855, 559–562 (2005).
[CrossRef]

Koyamada, Y.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
[CrossRef]

Kurashima, T.

Li, C. H.

K. Kishda, C. H. Li, and K. Nishiguchi, “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE 5855, 559–562 (2005).
[CrossRef]

Li, W.

Li, Y.

Mafang, S. F.

L. Thevenaz and S. F. Mafang, “Distributed fiber sensing using Brillouin echoes,” Proc. SPIE 7004, 70043N (2008).
[CrossRef]

Maughan, S. M.

Mizuno, Y.

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13 mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
[CrossRef]

Naruse, H.

Newson, T. P.

Nikles, M.

Nishiguchi, K.

K. Kishda, C. H. Li, and K. Nishiguchi, “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE 5855, 559–562 (2005).
[CrossRef]

Parker, T. R.

Primerov, N.

Robert, P. A.

Rogers, A. J.

Sakairi, Y.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[CrossRef]

Shimizu, K.

Smith, J.

Snoddy, J.

Song, K. Y.

Sperber, T.

Takeuchi, N.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[CrossRef]

Tateda, M.

Thevenaz, L.

Tur, M.

Wang, F.

Webb, D. J.

Zhang, X.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (2)

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19, 1910–1912 (2007).
[CrossRef]

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13 mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21, 474–476 (2009).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (2)

Opt. Lett. (8)

F. Wang, X. Bao, L. Chen, Y. Li, J. Snoddy, and X. Zhang, “Using pulse with dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor,” Opt. Lett. 33, 2707–2709 (2008).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef]

S. M. Maughan, H. H. Kee, and T. P. Newson, “57 km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331–333 (2001).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185–187 (1993).
[CrossRef]

X. Bao, D. J. Webb, and D. A. Jackon, “22 km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett. 18, 552–554 (1993).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef]

X. Bao, A. W. Brown, M. DeMerchant, and J. Smith, “Characterization of the Brillouin gain/loss linewidth for single mode fibers using very short pulses,” Opt. Lett. 24, 510–512(1999).
[CrossRef]

Proc. SPIE (2)

L. Thevenaz and S. F. Mafang, “Distributed fiber sensing using Brillouin echoes,” Proc. SPIE 7004, 70043N (2008).
[CrossRef]

K. Kishda, C. H. Li, and K. Nishiguchi, “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE 5855, 559–562 (2005).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics, 4th ed. (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Time traces of the Brillouin signal in the vicinity of start region of the fiber with 8 and 8.2 ns pulse widths and their differential signal.

Fig. 2.
Fig. 2.

SRN reduction of DPP-BOTDA as a function of the pulse width (the short pulse of the pulse pair) for the pulse-width differences of 0.1 and 0.2 ns, respectively.

Fig. 3.
Fig. 3.

Experimental setup. PD, photodetector; PC, polarization controller; EOM, electro-optic modulator; EDFA, erbium-doped fiber amplifier; DAQ, data acquisition. The surface of the Peltier heater is marked with lines from 1 to 5 cm.

Fig. 4.
Fig. 4.

Pulse waveforms of 8 and 8.2 ns pulses generated from (a) pulse generator 1 with a fall-time of 780 ps and (b) pulse generator 2 with a fall-time of 150 ps. The green curves are the differential pulses.

Fig. 5.
Fig. 5.

The measured 3-D Brillouin spectra with the 8 / 8.2 ns pulse pair using (a) pulse generator 1 with a fall-time of 780 ps and (b) pulse generator 2 with a fall-time of 150 ps. A 5 cm segment located at 4.31–4.36 cm was heated to 73 °C.

Fig. 6.
Fig. 6.

The fitted BFS and corresponding temperature as a function of position for the two cases of Fig. 5. The blue solid line represents the real temperature profile.

Fig. 7.
Fig. 7.

Measured results with the 8 / 8.2 ns pulse pair using pulse generator 2: (a) the 3-D Brillouin spectra and (b) the fitted BFS and corresponding temperature as a function of position. A 2 cm segment located at 4.33–4.35 cm was heated to 73 °C.

Fig. 8.
Fig. 8.

The Brillouin spectra with the 8 / 8.2 ns pulse pair: (a) experiment and (b) simulation, where the differential signals are magnified by a factor of 20 for both cases.

Fig. 9.
Fig. 9.

Measured time traces of the Brillouin signal with the 8 / 8.2 ns pulse pair of a 2 km fiber.

Fig. 10.
Fig. 10.

Measured results at the end of the 2 km sensing fiber: (a) the 3-D Brillouin spectra and (b) the fitted BFS and corresponding temperature as a function of position. A 2 cm segment was heated to 76 °C.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E p z + n c E p t = i g 2 E s Q ,
E s z + n c E s t = i g 2 E p Q * ,
Q t + Γ Q = i g 1 η E p E s * .
Q = i g 1 η 0 t E p E s * exp [ Γ ( t τ ) ] d τ .
E p z + n c E p t = g 0 Γ 2 0 t E p E s * exp [ Γ ( t τ ) ] d τ , E s z + n c E s t = g 0 Γ 2 0 t E p * E s exp [ Γ * ( t τ ) ] d τ ,
R SNR = 10 log I τ 2 I τ 1 I τ 1 ,

Metrics