Abstract

The performance of the vibrationally excited nitric oxide monitoring (VENOM) technique for simultaneous velocity and temperature measurements in gaseous flowfields is presented. Two different schemes were investigated, employing different methods to “write” a transient NO grid in the flow using the 355 nm photolysis of NO2, which was subsequently probed by planar laser induced fluorescence imaging to extract velocity maps. We find that only one scheme provides full-frame temperature maps. The most accurate velocity measurement was attained by writing an NO pattern in the flow using a microlens array and then comparing the line displacement with respect to a reference image. The demonstrated uncertainty of this approach was 1.0%, corresponding to 7m/s in a 705m/s uniform flow. We found that the uncertainty associated with the instantaneous temperature measurements using the NO two-line thermometry technique was largely determined by the shot-to-shot power fluctuations of the probe lasers and, for the flows employed, were determined to range from 6% to 7% of the mean freestream temperature. Finally, simultaneous and local velocity/temperature measurements were performed in the wake of a cylinder in a uniform Mach 4.6 flowfield. The mean and fluctuation velocity and temperature maps were computed from 5000 single-shot measurements. The wake temperature and velocity fluctuations, with respect to the freestream values, were 15% to 30% and 5% to 20%, respectively. The spatial distributions agree with the results of computational fluid dynamics (CFD) simulations. Our results suggest that the VENOM technique holds promise for interrogating high-speed unsteady flowfields.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Tsurikov and N. T. Clemens, “Scalar/velocity imaging of the fine scales in gas-phase turbulent jets,” AIAA paper 2001-0147 (AIAA, 2001).
  2. J. E. Rehm and N. T. Clemens, “A PIV/PLIF investigation of turbulent planar non-premixed flames,” AIAA paper 1997-2005 (AIAA, 1997).
  3. P. S. Kothnur, M. S. Tsurikov, N. T. Clemens, J. M. Donbar, and C. D. Carter, “Planar imaging of CH, OH and velocity in turbulent non-premixed jet flames,” Proc. Combust. Inst. 29, 1921–1927 (2002).
  4. J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurement of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Transfer 40, 3163–3176 (1997).
  5. H. G. Park, D. Dabiri, and M. Gharib, “Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder,” Exp. Fluids 30, 327–338(2001).
    [CrossRef]
  6. R. E. Huffman and G. S. Elliott, “An experimental investigation of accurate particle tracking in supersonic, rarefied axisymmetric jets,” AIAA paper 2009-1265 (AIAA, 2009).
  7. H. Hu and M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269–1281(2006).
    [CrossRef]
  8. M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole—field measurements of velocity and concentration fields using combined MTV and LIF,” Meas. Sci. Technol. 11, 1289–1300 (2000).
    [CrossRef]
  9. A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield,” Appl. Opt. 48, 4414–4423 (2009).
  10. M. Koochesfahani and D. G. Nocera, “Molecular tagging velocimetry,” in Handbook of Experimental Fluid Dynamics (Springer-Verlag, 2007), Chap. 5.4.
  11. A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. 47, 2597–2604 (2009).
    [CrossRef]
  12. C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2: a new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
    [CrossRef]
  13. P. Danehy, S. O’Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
    [CrossRef]
  14. S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 Photodissociation,” Heat Transf. Asian Res. 34, 40–52 (2005).
  15. N. Jiang, M. Nishihara, and W. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97, 221103 (2010).
    [CrossRef]
  16. B. F. Bathel, C. T. Johansen, P. M. Danehy, J. A. Inman, S. B. Jones, and C. P. Goyne, “Hypersonic boundary layer transition measurements using NO2 approaches NO photo-dissociation tagging velocimetry,” AIAA paper 2011-3246 (AIAA, 2011).
  17. R. Sánchez-González, R. Srinivasan, R. D. W. Bowersox, and S. W. North, “Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique,” Opt. Lett. 36, 196–198 (2011).
    [CrossRef]
  18. R. Sánchez-González, R. Srinivasan, J. Hofferth, A. J. Tindall, D. Kim, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50, 691–697 (2012).
  19. S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).
  20. J. Luque and D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program for Diatomic Molecules,” version 2.0.64.
  21. L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).
  22. M. D. Lahr, R. W. Pitz, Z. W. Douglas, and C. D. Carter, “Hydroxyl-tagging velocimetry measurements of a supersonic flow over a cavity,” J. Propul. Power 26, 790–797 (2010).
  23. P. Danehy, A. F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J., 41, 263–271 (2003).
    [CrossRef]
  24. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156–1166 (1981).
    [CrossRef]
  25. R. K. Hanson, “Planar laser-induced fluorescence imaging,” J. Quant. Spectrosc. Radiat. Transfer 40, 343–362 (1988).
  26. B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flow field,” AIAA J., 32, 1945–1951 (1994).
  27. I. S. McDermid and J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(AΣ2+,v′=0),” J. Quant. Spectrosc. Radiat. Transfer 29, 483–492 (1982).
  28. H. Zacharias, J. B. Halpern, and K. H. Welge, “Two-photon excitation of NO(AΣ2+,ν′=0,1,2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
    [CrossRef]
  29. J. F. Burris, T. J. McGee, and J. Barnes, “Time-resolved fluorescence studies of the AΣ2+(υ′=1) state of nitric oxide: lifetimes and collisional deactivation rates,” Chem. Phys. Lett. 121, 371–376 (1985).
    [CrossRef]
  30. M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion‐cooled NO2: NO product state distributions at excess energies 0–3000  cm−1,” J. Chem. Phys. 99, 1093–1108 (1993).
    [CrossRef]
  31. D. C. Robie, M. Hunter, J. L. Bates, and H. Reisler, “Product state distributions in the photodissociation of expansion-cooled NO2 near the NO(X2Π)ν=1 threshold,” Chem. Phys. Lett. 193, 413–422 (1992).
    [CrossRef]
  32. S. I. Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, “Probing the NO2+NO+O transition-state via time-resolved unimolecular decomposition,” J. Chem. Phys. 99, 3420–3435 (1993).
    [CrossRef]
  33. C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, and G. Radhakrishnan, “Nascent product excitations in unimolecular reactions: the separate statistical ensembles method,” J. Chem. Phys. 83, 5581–5588 (1985).
    [CrossRef]
  34. H. P. Broda and T. Carrington, “Rotational, vibrational, and electronic energy transfer in the fluorescence of nitric oxide,” J. Chem. Phys. 38, 136–147 (1963).
    [CrossRef]
  35. S. Lee, J. Luque, J. Reppel, A. Brown, and D. R. Crosley, “Rotational energy transfer in NO (A2Σ+,v′=0 by N2 and O2 at room temperature,” J. Chem. Phys. 121, 1373–1382 (2004).
    [CrossRef]
  36. T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, and M. Ito, “Rotational energy transfer in NO AΣ2+,ν=0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
    [CrossRef]
  37. M. H. Kabir, I. O. Antonov, and M. C. Heaven, “Probing rotational relaxation in HBr(ν=1) using double resonance spectroscopy,” J. Chem. Phys. 130, 074305 (2009).
    [CrossRef]
  38. M. Islam, I. W. M. Smith, and M. H. Alexander, “Rate constants for total relaxation from the rotational levels J=7.5, 20.5, 31.5 and 40.5 in NO(X2Π1/2,ν=2) in collisions with He, Ar and N2: a comparison between experiment and theory,” Chem. Phys. Lett. 305, 311–318(1999).
    [CrossRef]
  39. A. Hsu, “Application of advanced laser and optical diagnostics towards non-thermochemical equilibrium systems,” Ph.D. dissertation (Texas A&M University, 2009).
  40. B. K. McMillin, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
  41. W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt60: a parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” AIAA paper 1999-0786 (AIAA, 1999).
  42. S. K. Godunov, “A finite-distance method for the numerical computation of discontinuous solutions of the equations of fluid dynamics,” Sb. Math. 47, 357–393 (1959).
  43. F. R. Menter, “Zonal two-equation k-ω turbulence models for aerodynamic flows,” AIAA paper 1993-2006 (AIAA, 1993).
  44. B. F. Bathel, P. M. Danehy, J. A. Inman, S. B. Jones, C. B. Ivey, and C. P. Goyne, “Multiple velocity profile measurements in hypersonic flows using sequentially-imaged fluorescence tagging,” AIAA paper 2010-1404 (AIAA, 2010).

2011 (2)

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

R. Sánchez-González, R. Srinivasan, R. D. W. Bowersox, and S. W. North, “Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique,” Opt. Lett. 36, 196–198 (2011).
[CrossRef]

2010 (3)

M. D. Lahr, R. W. Pitz, Z. W. Douglas, and C. D. Carter, “Hydroxyl-tagging velocimetry measurements of a supersonic flow over a cavity,” J. Propul. Power 26, 790–797 (2010).

B. F. Bathel, P. M. Danehy, J. A. Inman, S. B. Jones, C. B. Ivey, and C. P. Goyne, “Multiple velocity profile measurements in hypersonic flows using sequentially-imaged fluorescence tagging,” AIAA paper 2010-1404 (AIAA, 2010).

N. Jiang, M. Nishihara, and W. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97, 221103 (2010).
[CrossRef]

2009 (3)

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. 47, 2597–2604 (2009).
[CrossRef]

M. H. Kabir, I. O. Antonov, and M. C. Heaven, “Probing rotational relaxation in HBr(ν=1) using double resonance spectroscopy,” J. Chem. Phys. 130, 074305 (2009).
[CrossRef]

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield,” Appl. Opt. 48, 4414–4423 (2009).

2006 (1)

H. Hu and M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269–1281(2006).
[CrossRef]

2005 (1)

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 Photodissociation,” Heat Transf. Asian Res. 34, 40–52 (2005).

2004 (2)

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).

S. Lee, J. Luque, J. Reppel, A. Brown, and D. R. Crosley, “Rotational energy transfer in NO (A2Σ+,v′=0 by N2 and O2 at room temperature,” J. Chem. Phys. 121, 1373–1382 (2004).
[CrossRef]

2003 (2)

P. Danehy, A. F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J., 41, 263–271 (2003).
[CrossRef]

P. Danehy, S. O’Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

2002 (1)

P. S. Kothnur, M. S. Tsurikov, N. T. Clemens, J. M. Donbar, and C. D. Carter, “Planar imaging of CH, OH and velocity in turbulent non-premixed jet flames,” Proc. Combust. Inst. 29, 1921–1927 (2002).

2001 (1)

H. G. Park, D. Dabiri, and M. Gharib, “Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder,” Exp. Fluids 30, 327–338(2001).
[CrossRef]

2000 (1)

M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole—field measurements of velocity and concentration fields using combined MTV and LIF,” Meas. Sci. Technol. 11, 1289–1300 (2000).
[CrossRef]

1999 (3)

C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2: a new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
[CrossRef]

W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt60: a parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” AIAA paper 1999-0786 (AIAA, 1999).

M. Islam, I. W. M. Smith, and M. H. Alexander, “Rate constants for total relaxation from the rotational levels J=7.5, 20.5, 31.5 and 40.5 in NO(X2Π1/2,ν=2) in collisions with He, Ar and N2: a comparison between experiment and theory,” Chem. Phys. Lett. 305, 311–318(1999).
[CrossRef]

1997 (1)

J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurement of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Transfer 40, 3163–3176 (1997).

1994 (1)

B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flow field,” AIAA J., 32, 1945–1951 (1994).

1993 (4)

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion‐cooled NO2: NO product state distributions at excess energies 0–3000  cm−1,” J. Chem. Phys. 99, 1093–1108 (1993).
[CrossRef]

S. I. Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, “Probing the NO2+NO+O transition-state via time-resolved unimolecular decomposition,” J. Chem. Phys. 99, 3420–3435 (1993).
[CrossRef]

F. R. Menter, “Zonal two-equation k-ω turbulence models for aerodynamic flows,” AIAA paper 1993-2006 (AIAA, 1993).

B. K. McMillin, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).

1992 (1)

D. C. Robie, M. Hunter, J. L. Bates, and H. Reisler, “Product state distributions in the photodissociation of expansion-cooled NO2 near the NO(X2Π)ν=1 threshold,” Chem. Phys. Lett. 193, 413–422 (1992).
[CrossRef]

1988 (1)

R. K. Hanson, “Planar laser-induced fluorescence imaging,” J. Quant. Spectrosc. Radiat. Transfer 40, 343–362 (1988).

1985 (2)

J. F. Burris, T. J. McGee, and J. Barnes, “Time-resolved fluorescence studies of the AΣ2+(υ′=1) state of nitric oxide: lifetimes and collisional deactivation rates,” Chem. Phys. Lett. 121, 371–376 (1985).
[CrossRef]

C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, and G. Radhakrishnan, “Nascent product excitations in unimolecular reactions: the separate statistical ensembles method,” J. Chem. Phys. 83, 5581–5588 (1985).
[CrossRef]

1984 (1)

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, and M. Ito, “Rotational energy transfer in NO AΣ2+,ν=0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

1982 (1)

I. S. McDermid and J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(AΣ2+,v′=0),” J. Quant. Spectrosc. Radiat. Transfer 29, 483–492 (1982).

1981 (1)

1976 (1)

H. Zacharias, J. B. Halpern, and K. H. Welge, “Two-photon excitation of NO(AΣ2+,ν′=0,1,2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
[CrossRef]

1963 (1)

H. P. Broda and T. Carrington, “Rotational, vibrational, and electronic energy transfer in the fluorescence of nitric oxide,” J. Chem. Phys. 38, 136–147 (1963).
[CrossRef]

1959 (1)

S. K. Godunov, “A finite-distance method for the numerical computation of discontinuous solutions of the equations of fluid dynamics,” Sb. Math. 47, 357–393 (1959).

Abbatt, J. P. D.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Alexander, M. H.

M. Islam, I. W. M. Smith, and M. H. Alexander, “Rate constants for total relaxation from the rotational levels J=7.5, 20.5, 31.5 and 40.5 in NO(X2Π1/2,ν=2) in collisions with He, Ar and N2: a comparison between experiment and theory,” Chem. Phys. Lett. 305, 311–318(1999).
[CrossRef]

Anezaki, Y.

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, and M. Ito, “Rotational energy transfer in NO AΣ2+,ν=0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Antonov, I. O.

M. H. Kabir, I. O. Antonov, and M. C. Heaven, “Probing rotational relaxation in HBr(ν=1) using double resonance spectroscopy,” J. Chem. Phys. 130, 074305 (2009).
[CrossRef]

Barker, J. R.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Barnes, J.

J. F. Burris, T. J. McGee, and J. Barnes, “Time-resolved fluorescence studies of the AΣ2+(υ′=1) state of nitric oxide: lifetimes and collisional deactivation rates,” Chem. Phys. Lett. 121, 371–376 (1985).
[CrossRef]

Bates, J. L.

D. C. Robie, M. Hunter, J. L. Bates, and H. Reisler, “Product state distributions in the photodissociation of expansion-cooled NO2 near the NO(X2Π)ν=1 threshold,” Chem. Phys. Lett. 193, 413–422 (1992).
[CrossRef]

Bathel, B. F.

B. F. Bathel, P. M. Danehy, J. A. Inman, S. B. Jones, C. B. Ivey, and C. P. Goyne, “Multiple velocity profile measurements in hypersonic flows using sequentially-imaged fluorescence tagging,” AIAA paper 2010-1404 (AIAA, 2010).

B. F. Bathel, C. T. Johansen, P. M. Danehy, J. A. Inman, S. B. Jones, and C. P. Goyne, “Hypersonic boundary layer transition measurements using NO2 approaches NO photo-dissociation tagging velocimetry,” AIAA paper 2011-3246 (AIAA, 2011).

Bowersox, R.

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. 47, 2597–2604 (2009).
[CrossRef]

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield,” Appl. Opt. 48, 4414–4423 (2009).

Bowersox, R. D. W.

R. Sánchez-González, R. Srinivasan, R. D. W. Bowersox, and S. W. North, “Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique,” Opt. Lett. 36, 196–198 (2011).
[CrossRef]

R. Sánchez-González, R. Srinivasan, J. Hofferth, A. J. Tindall, D. Kim, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50, 691–697 (2012).

Broda, H. P.

H. P. Broda and T. Carrington, “Rotational, vibrational, and electronic energy transfer in the fluorescence of nitric oxide,” J. Chem. Phys. 38, 136–147 (1963).
[CrossRef]

Brown, A.

S. Lee, J. Luque, J. Reppel, A. Brown, and D. R. Crosley, “Rotational energy transfer in NO (A2Σ+,v′=0 by N2 and O2 at room temperature,” J. Chem. Phys. 121, 1373–1382 (2004).
[CrossRef]

Brucker, G. A.

S. I. Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, “Probing the NO2+NO+O transition-state via time-resolved unimolecular decomposition,” J. Chem. Phys. 99, 3420–3435 (1993).
[CrossRef]

Burkholder, J. B.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Burris, J. F.

J. F. Burris, T. J. McGee, and J. Barnes, “Time-resolved fluorescence studies of the AΣ2+(υ′=1) state of nitric oxide: lifetimes and collisional deactivation rates,” Chem. Phys. Lett. 121, 371–376 (1985).
[CrossRef]

Carrington, T.

H. P. Broda and T. Carrington, “Rotational, vibrational, and electronic energy transfer in the fluorescence of nitric oxide,” J. Chem. Phys. 38, 136–147 (1963).
[CrossRef]

Carter, C. D.

M. D. Lahr, R. W. Pitz, Z. W. Douglas, and C. D. Carter, “Hydroxyl-tagging velocimetry measurements of a supersonic flow over a cavity,” J. Propul. Power 26, 790–797 (2010).

P. S. Kothnur, M. S. Tsurikov, N. T. Clemens, J. M. Donbar, and C. D. Carter, “Planar imaging of CH, OH and velocity in turbulent non-premixed jet flames,” Proc. Combust. Inst. 29, 1921–1927 (2002).

Catanzarite, J.

C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, and G. Radhakrishnan, “Nascent product excitations in unimolecular reactions: the separate statistical ensembles method,” J. Chem. Phys. 83, 5581–5588 (1985).
[CrossRef]

Cattolica, R.

Chen, Y.

S. I. Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, “Probing the NO2+NO+O transition-state via time-resolved unimolecular decomposition,” J. Chem. Phys. 99, 3420–3435 (1993).
[CrossRef]

Clemens, N. T.

P. S. Kothnur, M. S. Tsurikov, N. T. Clemens, J. M. Donbar, and C. D. Carter, “Planar imaging of CH, OH and velocity in turbulent non-premixed jet flames,” Proc. Combust. Inst. 29, 1921–1927 (2002).

J. E. Rehm and N. T. Clemens, “A PIV/PLIF investigation of turbulent planar non-premixed flames,” AIAA paper 1997-2005 (AIAA, 1997).

M. S. Tsurikov and N. T. Clemens, “Scalar/velocity imaging of the fine scales in gas-phase turbulent jets,” AIAA paper 2001-0147 (AIAA, 2001).

Cohn, R.

M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole—field measurements of velocity and concentration fields using combined MTV and LIF,” Meas. Sci. Technol. 11, 1289–1300 (2000).
[CrossRef]

Crosley, D. R.

S. Lee, J. Luque, J. Reppel, A. Brown, and D. R. Crosley, “Rotational energy transfer in NO (A2Σ+,v′=0 by N2 and O2 at room temperature,” J. Chem. Phys. 121, 1373–1382 (2004).
[CrossRef]

J. Luque and D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program for Diatomic Molecules,” version 2.0.64.

Dabiri, D.

H. G. Park, D. Dabiri, and M. Gharib, “Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder,” Exp. Fluids 30, 327–338(2001).
[CrossRef]

Danehy, P.

P. Danehy, S. O’Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

P. Danehy, A. F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J., 41, 263–271 (2003).
[CrossRef]

Danehy, P. M.

B. F. Bathel, P. M. Danehy, J. A. Inman, S. B. Jones, C. B. Ivey, and C. P. Goyne, “Multiple velocity profile measurements in hypersonic flows using sequentially-imaged fluorescence tagging,” AIAA paper 2010-1404 (AIAA, 2010).

B. F. Bathel, C. T. Johansen, P. M. Danehy, J. A. Inman, S. B. Jones, and C. P. Goyne, “Hypersonic boundary layer transition measurements using NO2 approaches NO photo-dissociation tagging velocimetry,” AIAA paper 2011-3246 (AIAA, 2011).

Donbar, J. M.

P. S. Kothnur, M. S. Tsurikov, N. T. Clemens, J. M. Donbar, and C. D. Carter, “Planar imaging of CH, OH and velocity in turbulent non-premixed jet flames,” Proc. Combust. Inst. 29, 1921–1927 (2002).

Douglas, Z. W.

M. D. Lahr, R. W. Pitz, Z. W. Douglas, and C. D. Carter, “Hydroxyl-tagging velocimetry measurements of a supersonic flow over a cavity,” J. Propul. Power 26, 790–797 (2010).

Ebata, T.

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, and M. Ito, “Rotational energy transfer in NO AΣ2+,ν=0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Elliott, G. S.

R. E. Huffman and G. S. Elliott, “An experimental investigation of accurate particle tracking in supersonic, rarefied axisymmetric jets,” AIAA paper 2009-1265 (AIAA, 2009).

Fox, J.

P. Danehy, S. O’Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

Fox, J. S.

P. Danehy, A. F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J., 41, 263–271 (2003).
[CrossRef]

Friedl, R. R.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Fujii, M.

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, and M. Ito, “Rotational energy transfer in NO AΣ2+,ν=0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Gharib, M.

H. G. Park, D. Dabiri, and M. Gharib, “Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder,” Exp. Fluids 30, 327–338(2001).
[CrossRef]

Godunov, S. K.

S. K. Godunov, “A finite-distance method for the numerical computation of discontinuous solutions of the equations of fluid dynamics,” Sb. Math. 47, 357–393 (1959).

Golden, D. M.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Goyne, C. P.

B. F. Bathel, P. M. Danehy, J. A. Inman, S. B. Jones, C. B. Ivey, and C. P. Goyne, “Multiple velocity profile measurements in hypersonic flows using sequentially-imaged fluorescence tagging,” AIAA paper 2010-1404 (AIAA, 2010).

B. F. Bathel, C. T. Johansen, P. M. Danehy, J. A. Inman, S. B. Jones, and C. P. Goyne, “Hypersonic boundary layer transition measurements using NO2 approaches NO photo-dissociation tagging velocimetry,” AIAA paper 2011-3246 (AIAA, 2011).

Grismer, M. J.

W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt60: a parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” AIAA paper 1999-0786 (AIAA, 1999).

Halpern, J. B.

H. Zacharias, J. B. Halpern, and K. H. Welge, “Two-photon excitation of NO(AΣ2+,ν′=0,1,2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
[CrossRef]

Hanson, R. K.

B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flow field,” AIAA J., 32, 1945–1951 (1994).

B. K. McMillin, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).

R. K. Hanson, “Planar laser-induced fluorescence imaging,” J. Quant. Spectrosc. Radiat. Transfer 40, 343–362 (1988).

Heaven, M. C.

M. H. Kabir, I. O. Antonov, and M. C. Heaven, “Probing rotational relaxation in HBr(ν=1) using double resonance spectroscopy,” J. Chem. Phys. 130, 074305 (2009).
[CrossRef]

Hishida, K.

J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurement of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Transfer 40, 3163–3176 (1997).

Hofferth, J.

R. Sánchez-González, R. Srinivasan, J. Hofferth, A. J. Tindall, D. Kim, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50, 691–697 (2012).

Houwing, A. F. P.

P. Danehy, A. F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J., 41, 263–271 (2003).
[CrossRef]

Houwing, F.

P. Danehy, S. O’Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

Hsu, A.

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. 47, 2597–2604 (2009).
[CrossRef]

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield,” Appl. Opt. 48, 4414–4423 (2009).

A. Hsu, “Application of advanced laser and optical diagnostics towards non-thermochemical equilibrium systems,” Ph.D. dissertation (Texas A&M University, 2009).

Hu, H.

H. Hu and M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269–1281(2006).
[CrossRef]

Hu, S.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).

Huffman, R. E.

R. E. Huffman and G. S. Elliott, “An experimental investigation of accurate particle tracking in supersonic, rarefied axisymmetric jets,” AIAA paper 2009-1265 (AIAA, 2009).

Huie, R. E.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Hunter, M.

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion‐cooled NO2: NO product state distributions at excess energies 0–3000  cm−1,” J. Chem. Phys. 99, 1093–1108 (1993).
[CrossRef]

D. C. Robie, M. Hunter, J. L. Bates, and H. Reisler, “Product state distributions in the photodissociation of expansion-cooled NO2 near the NO(X2Π)ν=1 threshold,” Chem. Phys. Lett. 193, 413–422 (1992).
[CrossRef]

Inman, J. A.

B. F. Bathel, P. M. Danehy, J. A. Inman, S. B. Jones, C. B. Ivey, and C. P. Goyne, “Multiple velocity profile measurements in hypersonic flows using sequentially-imaged fluorescence tagging,” AIAA paper 2010-1404 (AIAA, 2010).

B. F. Bathel, C. T. Johansen, P. M. Danehy, J. A. Inman, S. B. Jones, and C. P. Goyne, “Hypersonic boundary layer transition measurements using NO2 approaches NO photo-dissociation tagging velocimetry,” AIAA paper 2011-3246 (AIAA, 2011).

Ionov, S. I.

S. I. Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, “Probing the NO2+NO+O transition-state via time-resolved unimolecular decomposition,” J. Chem. Phys. 99, 3420–3435 (1993).
[CrossRef]

Islam, M.

M. Islam, I. W. M. Smith, and M. H. Alexander, “Rate constants for total relaxation from the rotational levels J=7.5, 20.5, 31.5 and 40.5 in NO(X2Π1/2,ν=2) in collisions with He, Ar and N2: a comparison between experiment and theory,” Chem. Phys. Lett. 305, 311–318(1999).
[CrossRef]

Ito, M.

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, and M. Ito, “Rotational energy transfer in NO AΣ2+,ν=0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Ivey, C. B.

B. F. Bathel, P. M. Danehy, J. A. Inman, S. B. Jones, C. B. Ivey, and C. P. Goyne, “Multiple velocity profile measurements in hypersonic flows using sequentially-imaged fluorescence tagging,” AIAA paper 2010-1404 (AIAA, 2010).

Jaques, C.

S. I. Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, “Probing the NO2+NO+O transition-state via time-resolved unimolecular decomposition,” J. Chem. Phys. 99, 3420–3435 (1993).
[CrossRef]

Jiang, N.

N. Jiang, M. Nishihara, and W. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97, 221103 (2010).
[CrossRef]

Johansen, C. T.

B. F. Bathel, C. T. Johansen, P. M. Danehy, J. A. Inman, S. B. Jones, and C. P. Goyne, “Hypersonic boundary layer transition measurements using NO2 approaches NO photo-dissociation tagging velocimetry,” AIAA paper 2011-3246 (AIAA, 2011).

Jones, S. B.

B. F. Bathel, P. M. Danehy, J. A. Inman, S. B. Jones, C. B. Ivey, and C. P. Goyne, “Multiple velocity profile measurements in hypersonic flows using sequentially-imaged fluorescence tagging,” AIAA paper 2010-1404 (AIAA, 2010).

B. F. Bathel, C. T. Johansen, P. M. Danehy, J. A. Inman, S. B. Jones, and C. P. Goyne, “Hypersonic boundary layer transition measurements using NO2 approaches NO photo-dissociation tagging velocimetry,” AIAA paper 2011-3246 (AIAA, 2011).

Kabir, M. H.

M. H. Kabir, I. O. Antonov, and M. C. Heaven, “Probing rotational relaxation in HBr(ν=1) using double resonance spectroscopy,” J. Chem. Phys. 130, 074305 (2009).
[CrossRef]

Kasahara, M.

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 Photodissociation,” Heat Transf. Asian Res. 34, 40–52 (2005).

Kim, D.

R. Sánchez-González, R. Srinivasan, J. Hofferth, A. J. Tindall, D. Kim, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50, 691–697 (2012).

Kolb, C. E.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Kono, M.

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 Photodissociation,” Heat Transf. Asian Res. 34, 40–52 (2005).

Koochesfahani, M.

H. Hu and M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269–1281(2006).
[CrossRef]

M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole—field measurements of velocity and concentration fields using combined MTV and LIF,” Meas. Sci. Technol. 11, 1289–1300 (2000).
[CrossRef]

M. Koochesfahani and D. G. Nocera, “Molecular tagging velocimetry,” in Handbook of Experimental Fluid Dynamics (Springer-Verlag, 2007), Chap. 5.4.

Kothnur, P. S.

P. S. Kothnur, M. S. Tsurikov, N. T. Clemens, J. M. Donbar, and C. D. Carter, “Planar imaging of CH, OH and velocity in turbulent non-premixed jet flames,” Proc. Combust. Inst. 29, 1921–1927 (2002).

Kurylo, M. J.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Lahr, M. D.

M. D. Lahr, R. W. Pitz, Z. W. Douglas, and C. D. Carter, “Hydroxyl-tagging velocimetry measurements of a supersonic flow over a cavity,” J. Propul. Power 26, 790–797 (2010).

Laudenslager, J. B.

I. S. McDermid and J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(AΣ2+,v′=0),” J. Quant. Spectrosc. Radiat. Transfer 29, 483–492 (1982).

Lee, S.

S. Lee, J. Luque, J. Reppel, A. Brown, and D. R. Crosley, “Rotational energy transfer in NO (A2Σ+,v′=0 by N2 and O2 at room temperature,” J. Chem. Phys. 121, 1373–1382 (2004).
[CrossRef]

Lempert, W.

N. Jiang, M. Nishihara, and W. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97, 221103 (2010).
[CrossRef]

Luque, J.

S. Lee, J. Luque, J. Reppel, A. Brown, and D. R. Crosley, “Rotational energy transfer in NO (A2Σ+,v′=0 by N2 and O2 at room temperature,” J. Chem. Phys. 121, 1373–1382 (2004).
[CrossRef]

J. Luque and D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program for Diatomic Molecules,” version 2.0.64.

MacKinnon, C.

M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole—field measurements of velocity and concentration fields using combined MTV and LIF,” Meas. Sci. Technol. 11, 1289–1300 (2000).
[CrossRef]

Maeda, M.

J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurement of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Transfer 40, 3163–3176 (1997).

McDermid, I. S.

I. S. McDermid and J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(AΣ2+,v′=0),” J. Quant. Spectrosc. Radiat. Transfer 29, 483–492 (1982).

McGee, T. J.

J. F. Burris, T. J. McGee, and J. Barnes, “Time-resolved fluorescence studies of the AΣ2+(υ′=1) state of nitric oxide: lifetimes and collisional deactivation rates,” Chem. Phys. Lett. 121, 371–376 (1985).
[CrossRef]

McMillin, B. K.

B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flow field,” AIAA J., 32, 1945–1951 (1994).

B. K. McMillin, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).

Menter, F. R.

F. R. Menter, “Zonal two-equation k-ω turbulence models for aerodynamic flows,” AIAA paper 1993-2006 (AIAA, 1993).

Mikami, N.

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, and M. Ito, “Rotational energy transfer in NO AΣ2+,ν=0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Moortgat, G. K.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Nadler, I.

C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, and G. Radhakrishnan, “Nascent product excitations in unimolecular reactions: the separate statistical ensembles method,” J. Chem. Phys. 83, 5581–5588 (1985).
[CrossRef]

Nakaya, S.

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 Photodissociation,” Heat Transf. Asian Res. 34, 40–52 (2005).

Nishihara, M.

N. Jiang, M. Nishihara, and W. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97, 221103 (2010).
[CrossRef]

Noble, M.

C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, and G. Radhakrishnan, “Nascent product excitations in unimolecular reactions: the separate statistical ensembles method,” J. Chem. Phys. 83, 5581–5588 (1985).
[CrossRef]

Nocera, D. G.

M. Koochesfahani and D. G. Nocera, “Molecular tagging velocimetry,” in Handbook of Experimental Fluid Dynamics (Springer-Verlag, 2007), Chap. 5.4.

North, S.

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. 47, 2597–2604 (2009).
[CrossRef]

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield,” Appl. Opt. 48, 4414–4423 (2009).

North, S. W.

R. Sánchez-González, R. Srinivasan, R. D. W. Bowersox, and S. W. North, “Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique,” Opt. Lett. 36, 196–198 (2011).
[CrossRef]

R. Sánchez-González, R. Srinivasan, J. Hofferth, A. J. Tindall, D. Kim, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50, 691–697 (2012).

O’Byrne, S.

P. Danehy, S. O’Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

Orkin, V. L.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Orlemann, C.

C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2: a new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
[CrossRef]

Palmer, J. L.

Park, H. G.

H. G. Park, D. Dabiri, and M. Gharib, “Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder,” Exp. Fluids 30, 327–338(2001).
[CrossRef]

Pitz, R. W.

M. D. Lahr, R. W. Pitz, Z. W. Douglas, and C. D. Carter, “Hydroxyl-tagging velocimetry measurements of a supersonic flow over a cavity,” J. Propul. Power 26, 790–797 (2010).

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).

Radhakrishnan, G.

C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, and G. Radhakrishnan, “Nascent product excitations in unimolecular reactions: the separate statistical ensembles method,” J. Chem. Phys. 83, 5581–5588 (1985).
[CrossRef]

Rehm, J. E.

J. E. Rehm and N. T. Clemens, “A PIV/PLIF investigation of turbulent planar non-premixed flames,” AIAA paper 1997-2005 (AIAA, 1997).

Reid, S. A.

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion‐cooled NO2: NO product state distributions at excess energies 0–3000  cm−1,” J. Chem. Phys. 99, 1093–1108 (1993).
[CrossRef]

Reisler, H.

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion‐cooled NO2: NO product state distributions at excess energies 0–3000  cm−1,” J. Chem. Phys. 99, 1093–1108 (1993).
[CrossRef]

D. C. Robie, M. Hunter, J. L. Bates, and H. Reisler, “Product state distributions in the photodissociation of expansion-cooled NO2 near the NO(X2Π)ν=1 threshold,” Chem. Phys. Lett. 193, 413–422 (1992).
[CrossRef]

C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, and G. Radhakrishnan, “Nascent product excitations in unimolecular reactions: the separate statistical ensembles method,” J. Chem. Phys. 83, 5581–5588 (1985).
[CrossRef]

Reppel, J.

S. Lee, J. Luque, J. Reppel, A. Brown, and D. R. Crosley, “Rotational energy transfer in NO (A2Σ+,v′=0 by N2 and O2 at room temperature,” J. Chem. Phys. 121, 1373–1382 (2004).
[CrossRef]

Ribarov, L. A.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).

Robie, D. C.

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion‐cooled NO2: NO product state distributions at excess energies 0–3000  cm−1,” J. Chem. Phys. 99, 1093–1108 (1993).
[CrossRef]

D. C. Robie, M. Hunter, J. L. Bates, and H. Reisler, “Product state distributions in the photodissociation of expansion-cooled NO2 near the NO(X2Π)ν=1 threshold,” Chem. Phys. Lett. 193, 413–422 (1992).
[CrossRef]

Sakakibara, J.

J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurement of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Transfer 40, 3163–3176 (1997).

Sánchez-González, R.

R. Sánchez-González, R. Srinivasan, R. D. W. Bowersox, and S. W. North, “Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique,” Opt. Lett. 36, 196–198 (2011).
[CrossRef]

R. Sánchez-González, R. Srinivasan, J. Hofferth, A. J. Tindall, D. Kim, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50, 691–697 (2012).

Sander, S. P.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Schulz, C.

C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2: a new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
[CrossRef]

Seitzman, J. M.

B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flow field,” AIAA J., 32, 1945–1951 (1994).

Smith, D.

P. Danehy, S. O’Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

Smith, D. R.

P. Danehy, A. F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J., 41, 263–271 (2003).
[CrossRef]

Smith, I. W. M.

M. Islam, I. W. M. Smith, and M. H. Alexander, “Rate constants for total relaxation from the rotational levels J=7.5, 20.5, 31.5 and 40.5 in NO(X2Π1/2,ν=2) in collisions with He, Ar and N2: a comparison between experiment and theory,” Chem. Phys. Lett. 305, 311–318(1999).
[CrossRef]

Srinivasan, R.

R. Sánchez-González, R. Srinivasan, R. D. W. Bowersox, and S. W. North, “Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique,” Opt. Lett. 36, 196–198 (2011).
[CrossRef]

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. 47, 2597–2604 (2009).
[CrossRef]

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield,” Appl. Opt. 48, 4414–4423 (2009).

R. Sánchez-González, R. Srinivasan, J. Hofferth, A. J. Tindall, D. Kim, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50, 691–697 (2012).

Strang, W. Z.

W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt60: a parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” AIAA paper 1999-0786 (AIAA, 1999).

Tindall, A. J.

R. Sánchez-González, R. Srinivasan, J. Hofferth, A. J. Tindall, D. Kim, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50, 691–697 (2012).

Tomaro, R. F.

W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt60: a parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” AIAA paper 1999-0786 (AIAA, 1999).

Tsue, M.

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 Photodissociation,” Heat Transf. Asian Res. 34, 40–52 (2005).

Tsurikov, M. S.

P. S. Kothnur, M. S. Tsurikov, N. T. Clemens, J. M. Donbar, and C. D. Carter, “Planar imaging of CH, OH and velocity in turbulent non-premixed jet flames,” Proc. Combust. Inst. 29, 1921–1927 (2002).

M. S. Tsurikov and N. T. Clemens, “Scalar/velocity imaging of the fine scales in gas-phase turbulent jets,” AIAA paper 2001-0147 (AIAA, 2001).

Wehrmeyer, J. A.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).

Welge, K. H.

H. Zacharias, J. B. Halpern, and K. H. Welge, “Two-photon excitation of NO(AΣ2+,ν′=0,1,2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
[CrossRef]

Wine, P. H.

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Wittig, C.

S. I. Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, “Probing the NO2+NO+O transition-state via time-resolved unimolecular decomposition,” J. Chem. Phys. 99, 3420–3435 (1993).
[CrossRef]

C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, and G. Radhakrishnan, “Nascent product excitations in unimolecular reactions: the separate statistical ensembles method,” J. Chem. Phys. 83, 5581–5588 (1985).
[CrossRef]

Wolfrum, J.

C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2: a new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
[CrossRef]

Zacharias, H.

H. Zacharias, J. B. Halpern, and K. H. Welge, “Two-photon excitation of NO(AΣ2+,ν′=0,1,2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
[CrossRef]

AIAA J. (5)

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. 47, 2597–2604 (2009).
[CrossRef]

P. Danehy, S. O’Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263–271 (2003).
[CrossRef]

B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flow field,” AIAA J., 32, 1945–1951 (1994).

R. Sánchez-González, R. Srinivasan, J. Hofferth, A. J. Tindall, D. Kim, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50, 691–697 (2012).

P. Danehy, A. F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J., 41, 263–271 (2003).
[CrossRef]

AIAA paper 1993-2006 (1)

F. R. Menter, “Zonal two-equation k-ω turbulence models for aerodynamic flows,” AIAA paper 1993-2006 (AIAA, 1993).

AIAA paper 1999-0786 (1)

W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt60: a parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” AIAA paper 1999-0786 (AIAA, 1999).

AIAA paper 2010-1404 (1)

B. F. Bathel, P. M. Danehy, J. A. Inman, S. B. Jones, C. B. Ivey, and C. P. Goyne, “Multiple velocity profile measurements in hypersonic flows using sequentially-imaged fluorescence tagging,” AIAA paper 2010-1404 (AIAA, 2010).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

N. Jiang, M. Nishihara, and W. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97, 221103 (2010).
[CrossRef]

Chem. Phys. (1)

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, and M. Ito, “Rotational energy transfer in NO AΣ2+,ν=0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984).
[CrossRef]

Chem. Phys. Lett. (5)

H. Zacharias, J. B. Halpern, and K. H. Welge, “Two-photon excitation of NO(AΣ2+,ν′=0,1,2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
[CrossRef]

J. F. Burris, T. J. McGee, and J. Barnes, “Time-resolved fluorescence studies of the AΣ2+(υ′=1) state of nitric oxide: lifetimes and collisional deactivation rates,” Chem. Phys. Lett. 121, 371–376 (1985).
[CrossRef]

D. C. Robie, M. Hunter, J. L. Bates, and H. Reisler, “Product state distributions in the photodissociation of expansion-cooled NO2 near the NO(X2Π)ν=1 threshold,” Chem. Phys. Lett. 193, 413–422 (1992).
[CrossRef]

M. Islam, I. W. M. Smith, and M. H. Alexander, “Rate constants for total relaxation from the rotational levels J=7.5, 20.5, 31.5 and 40.5 in NO(X2Π1/2,ν=2) in collisions with He, Ar and N2: a comparison between experiment and theory,” Chem. Phys. Lett. 305, 311–318(1999).
[CrossRef]

C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2: a new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15–20 (1999).
[CrossRef]

Exp. Fluids (2)

H. G. Park, D. Dabiri, and M. Gharib, “Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder,” Exp. Fluids 30, 327–338(2001).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65–74 (2004).

Heat Transf. Asian Res. (1)

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 Photodissociation,” Heat Transf. Asian Res. 34, 40–52 (2005).

Int. J. Heat Mass Transfer (1)

J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurement of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Transfer 40, 3163–3176 (1997).

J. Chem. Phys. (6)

S. I. Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, “Probing the NO2+NO+O transition-state via time-resolved unimolecular decomposition,” J. Chem. Phys. 99, 3420–3435 (1993).
[CrossRef]

C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, and G. Radhakrishnan, “Nascent product excitations in unimolecular reactions: the separate statistical ensembles method,” J. Chem. Phys. 83, 5581–5588 (1985).
[CrossRef]

H. P. Broda and T. Carrington, “Rotational, vibrational, and electronic energy transfer in the fluorescence of nitric oxide,” J. Chem. Phys. 38, 136–147 (1963).
[CrossRef]

S. Lee, J. Luque, J. Reppel, A. Brown, and D. R. Crosley, “Rotational energy transfer in NO (A2Σ+,v′=0 by N2 and O2 at room temperature,” J. Chem. Phys. 121, 1373–1382 (2004).
[CrossRef]

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion‐cooled NO2: NO product state distributions at excess energies 0–3000  cm−1,” J. Chem. Phys. 99, 1093–1108 (1993).
[CrossRef]

M. H. Kabir, I. O. Antonov, and M. C. Heaven, “Probing rotational relaxation in HBr(ν=1) using double resonance spectroscopy,” J. Chem. Phys. 130, 074305 (2009).
[CrossRef]

J. Propul. Power (1)

M. D. Lahr, R. W. Pitz, Z. W. Douglas, and C. D. Carter, “Hydroxyl-tagging velocimetry measurements of a supersonic flow over a cavity,” J. Propul. Power 26, 790–797 (2010).

J. Quant. Spectrosc. Radiat. Transfer (2)

I. S. McDermid and J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(AΣ2+,v′=0),” J. Quant. Spectrosc. Radiat. Transfer 29, 483–492 (1982).

R. K. Hanson, “Planar laser-induced fluorescence imaging,” J. Quant. Spectrosc. Radiat. Transfer 40, 343–362 (1988).

JPL publication 10-6 (1)

S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. P. D. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat, R. E. Huie, and V. L. Orkin, “Chemical kinetics and photochemical data for use in atmospheric studies,” JPL publication 10-6 (2011).

Meas. Sci. Technol. (2)

H. Hu and M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269–1281(2006).
[CrossRef]

M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole—field measurements of velocity and concentration fields using combined MTV and LIF,” Meas. Sci. Technol. 11, 1289–1300 (2000).
[CrossRef]

Opt. Lett. (1)

Proc. Combust. Inst. (1)

P. S. Kothnur, M. S. Tsurikov, N. T. Clemens, J. M. Donbar, and C. D. Carter, “Planar imaging of CH, OH and velocity in turbulent non-premixed jet flames,” Proc. Combust. Inst. 29, 1921–1927 (2002).

Sb. Math. (1)

S. K. Godunov, “A finite-distance method for the numerical computation of discontinuous solutions of the equations of fluid dynamics,” Sb. Math. 47, 357–393 (1959).

Other (7)

J. Luque and D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program for Diatomic Molecules,” version 2.0.64.

A. Hsu, “Application of advanced laser and optical diagnostics towards non-thermochemical equilibrium systems,” Ph.D. dissertation (Texas A&M University, 2009).

M. S. Tsurikov and N. T. Clemens, “Scalar/velocity imaging of the fine scales in gas-phase turbulent jets,” AIAA paper 2001-0147 (AIAA, 2001).

J. E. Rehm and N. T. Clemens, “A PIV/PLIF investigation of turbulent planar non-premixed flames,” AIAA paper 1997-2005 (AIAA, 1997).

M. Koochesfahani and D. G. Nocera, “Molecular tagging velocimetry,” in Handbook of Experimental Fluid Dynamics (Springer-Verlag, 2007), Chap. 5.4.

R. E. Huffman and G. S. Elliott, “An experimental investigation of accurate particle tracking in supersonic, rarefied axisymmetric jets,” AIAA paper 2009-1265 (AIAA, 2009).

B. F. Bathel, C. T. Johansen, P. M. Danehy, J. A. Inman, S. B. Jones, and C. P. Goyne, “Hypersonic boundary layer transition measurements using NO2 approaches NO photo-dissociation tagging velocimetry,” AIAA paper 2011-3246 (AIAA, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Interpolated average streamwise velocity map (left) and temperature map (right) shown together with a CFD simulation obtained from 100-shot average images of an underexpanded jet probing two different transitions at 400 ns and 800 ns after photodissociation [17].

Fig. 2.
Fig. 2.

Experimental schematic of the VENOM experiments in the repetitively pulsed hypersonic flow apparatus.

Fig. 3.
Fig. 3.

Schematic diagram of the timing sequence for the VENOM measurements.

Fig. 4.
Fig. 4.

Single-shot time-delayed images (left panels) and interpolated streamwise velocity maps (right panels) obtained using a single “read” pulse. Image spatial resolution: 52pixel/mm. Flow direction is from left to right.

Fig. 5.
Fig. 5.

Boltzmann plots of the vibrational specific nascent NO rotational distributions produced by photodissociation with 355 nm. Experimental distributions measured by Hunter et al. [30] in an expansion-cooled NO2 sample.

Fig. 6.
Fig. 6.

Rotational temperature measurements as a function of time after photodissociation, τ1, for NO(v=0) and NO(v=1) in an N2 gas bath at 66.7 Pa and 294 K.

Fig. 7.
Fig. 7.

Measured rotational temperature profiles across the centerline of an underexpanded jet at different times after photodissociation compared with a CFD simulation. The CFD pressure is shown as well in the plot.

Fig. 8.
Fig. 8.

Mach 4.6 freestream average temperature measurement (left) and measured fluctuations as a percentage of the freestream temperature based on 200 single-shot measurements.

Fig. 9.
Fig. 9.

Temperature map of the Mach 4.6 freestream seeding 5% in NO2 in N2 with high fractional photodissociation.

Fig. 10.
Fig. 10.

Instantaneous images probing the R1+Q21(J=1.5) transition of the vibrationally excited NO in the freestream (a), the flow over a 3.2 mm diameter sphere (c), and the wake further downstream (e). The same sequence is shown (b, d, and f) for the R1+Q21(J=8.5) transition. Images (e) and (f) were acquired using a finer aluminum mesh to “write” the horizontal photodissociation lines.

Fig. 11.
Fig. 11.

Experimentally obtained average streamwise (u) and radial (v) velocity maps based on 5000 single-shot measurements (right panels, interpolated) shown next to a CFD simulation for comparison (left panels). The average temperature map is shown as well (bottom panel).

Fig. 12.
Fig. 12.

Measured velocity and temperature fluctuations normalized to the freestream values. All quantities are shown as a percentage.

Tables (1)

Tables Icon

Table 1. Uncertainty Components Associated with the Streamwise Velocimetry Measurements Using Only τ1

Metrics