Abstract

Various zinc oxide films were deposited by ion-beam sputter deposition (IBSD) under different oxygen partial pressures (PO2) at room temperature. The as-deposited ZnO films fabricated at PO2>1.0×104Torr had poly-crystalline structures to absorb water on the surface at ambient condition. Simultaneously, the film surfaces were covered and smoothed by the surface layers formed with the water, hydroxyl (OH) groups, and ZnO materials investigated by X-ray photoelectron spectroscopy (XPS). When the compositions of the surface layers were used in a multilayer fitting model of spectroscopic ellipsometry, the actual optical refractive index of the ZnO film deposited at PO2=1.2×104Torr was found to be about 1.9618 at λ=550nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Zhao, Z. L. Wang, and S. X. Mao, “Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope,” Nano Lett. 4, 587–590 (2004).
    [CrossRef]
  2. D. S. Ginley and C. Bright, “Transparent conducting oxides,” Mater. Res. Soc. Bull. 25, 15–18 (2000).
  3. E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes,” Thin Solid Films 516, 1629–1633 (2008).
    [CrossRef]
  4. Y. F. Chiang, C. C. Sung, and R. Ro, “Effects of metal buffer layer on characteristics of surface acoustic waves in ZnO/metal/diamond structures,” Appl. Phys. Lett. 96, 154104 (2010).
    [CrossRef]
  5. S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53, 2226–2231 (2008).
    [CrossRef]
  6. Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, “Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition,” Appl. Surf. Sci. 257, 3446–3450 (2011).
    [CrossRef]
  7. G. Redmond, D. Fitzmaurice, and M. Graetzel, “Visible light sensitization by cis-bis (thiocyanato) bis (2,2’- bipyridyl-4,4’-dicarboxylato) ruthenium(II) of a transparent nanocrystalline ZnO film prepared by Sol-Gel techniques,” Chem. Mater. 6, 686–691 (1994).
    [CrossRef]
  8. R. Menon, V. Gupta, H. H. Tan, K. Sreenivas, and C. Jagadish, “Origin of stress in radio frequency magnetron sputtered zinc oxide thin films,” J. Appl. Phys. 109, 064905 (2011).
    [CrossRef]
  9. S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, “Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition,” Superlattices Microstruct. 39, 306–313 (2006).
    [CrossRef]
  10. N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, “Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition,” Appl. Phys. Lett. 92, 023502 (2008).
    [CrossRef]
  11. S. Ilican, Y. Caglar, and M. Caglar, “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method,” J. Optoelectron Adv. Mater. 10, 2578–2583 (2008).
  12. J. H. Lee, B. W. Yeo, and B. O. Park, “Effects of the annealing treatment on electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis,” Thin Solid Films 457, 333–337 (2004).
    [CrossRef]
  13. Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys. 88, 201–204 (2000).
    [CrossRef]
  14. V. V. Ratnikov, R. N. Kyutt, S. V. Ivanov, M. P. Scheglov, and A. Baar, “Microstructure and strain of ZnO molecular-beam epitaxial layers on sapphire,” Semiconductors 44, 251–254 (2010).
    [CrossRef]
  15. J. C. Hsu and C. C. Lee, “Single- and dual-ion-beam sputter deposition of titanium oxide films,” Appl. Opt. 37, 1171–1176 (1998).
    [CrossRef]
  16. C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
    [CrossRef]
  17. P. L. Washington, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry,” Appl. Phys. Lett. 72, 3261–3263 (1998).
    [CrossRef]
  18. R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105, 1984–1990 (2001).
    [CrossRef]
  19. H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, and M. Muhler, “The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy,” Phys. Chem. Chem. Phys. 10, 7092–7097 (2008).
    [CrossRef]
  20. A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, and U. O. Karlsson, “Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase,” J. Phys. Chem. C 114, 11157–11161 (2010).
    [CrossRef]
  21. Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett. 94, 023110 (2009).
    [CrossRef]
  22. B. Meyer, “First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen,” Phys. Rev. B 69, 045416 (2004).
    [CrossRef]
  23. C. T. Chang, J. C. Hsu, P. W. Wang, and Y. H. Lin, “ZnO thin films deposited with various oxygen partial pressures by ion beam sputtering at room temperature,” in Proc. OPT’08 (Taiwan Optical Engineering Society, 2008).
  24. J. F. Moulder, W. F. Stickle, P. E. Scbol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronic, Inc., 1995).
  25. J. A. Woollam Co. Inc., Guide to Using WVASE32 (J. A. Woollam Co. Inc., 2008).
  26. B. D. Cullity, Elements of X-ray Diffractions (Addison-Wesley, 1978).
  27. W. T. Lim and C. H. Lee, “Highly oriented ZnO thin films deposited on RuSi substrates,” Thin Solid Films 353, 12–15 (1999).
    [CrossRef]
  28. J. Tauc, R. Grigorovichi, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
    [CrossRef]
  29. B. V. Crist, Handbook of Monochromatic XPS Spectra (Wiley, 2000).
  30. L. J. Meng, C. P. Moreira de Sá, and M. P. dos Santos, “Study of the structural properties of ZnO thin films by x-ray photoelectron spectroscopy,” Appl. Surf. Sci. 78, 57–61 (1994).
    [CrossRef]
  31. X. Shao, K. I. Fukui, H. Kondoh, M. Shionoya, and Y. Iwasawa, “STM study of surface species formed by methanol adsorption on stoichiometric and reduced ZnO(101¯0) surfaces,” J. Phys. Chem. C 113, 14356–14362 (2009).
    [CrossRef]
  32. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength range,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef]
  33. A. M. Clark, E. E. Fejer, A. G. Couper, and G. C. Jones, “Sweetite, a new mineral from Derbyshire,” Mineral Mag. 48, 267–269 (1984).
  34. H. K. Pulker, “Characterization of optical thin films,” Appl. Opt. 18, 1969–1977 (1979).
    [CrossRef]

2011 (2)

Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, “Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition,” Appl. Surf. Sci. 257, 3446–3450 (2011).
[CrossRef]

R. Menon, V. Gupta, H. H. Tan, K. Sreenivas, and C. Jagadish, “Origin of stress in radio frequency magnetron sputtered zinc oxide thin films,” J. Appl. Phys. 109, 064905 (2011).
[CrossRef]

2010 (3)

Y. F. Chiang, C. C. Sung, and R. Ro, “Effects of metal buffer layer on characteristics of surface acoustic waves in ZnO/metal/diamond structures,” Appl. Phys. Lett. 96, 154104 (2010).
[CrossRef]

V. V. Ratnikov, R. N. Kyutt, S. V. Ivanov, M. P. Scheglov, and A. Baar, “Microstructure and strain of ZnO molecular-beam epitaxial layers on sapphire,” Semiconductors 44, 251–254 (2010).
[CrossRef]

A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, and U. O. Karlsson, “Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase,” J. Phys. Chem. C 114, 11157–11161 (2010).
[CrossRef]

2009 (2)

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett. 94, 023110 (2009).
[CrossRef]

X. Shao, K. I. Fukui, H. Kondoh, M. Shionoya, and Y. Iwasawa, “STM study of surface species formed by methanol adsorption on stoichiometric and reduced ZnO(101¯0) surfaces,” J. Phys. Chem. C 113, 14356–14362 (2009).
[CrossRef]

2008 (5)

E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes,” Thin Solid Films 516, 1629–1633 (2008).
[CrossRef]

H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, and M. Muhler, “The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy,” Phys. Chem. Chem. Phys. 10, 7092–7097 (2008).
[CrossRef]

N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, “Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition,” Appl. Phys. Lett. 92, 023502 (2008).
[CrossRef]

S. Ilican, Y. Caglar, and M. Caglar, “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method,” J. Optoelectron Adv. Mater. 10, 2578–2583 (2008).

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53, 2226–2231 (2008).
[CrossRef]

2006 (1)

S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, “Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition,” Superlattices Microstruct. 39, 306–313 (2006).
[CrossRef]

2004 (3)

M. H. Zhao, Z. L. Wang, and S. X. Mao, “Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope,” Nano Lett. 4, 587–590 (2004).
[CrossRef]

J. H. Lee, B. W. Yeo, and B. O. Park, “Effects of the annealing treatment on electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis,” Thin Solid Films 457, 333–337 (2004).
[CrossRef]

B. Meyer, “First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen,” Phys. Rev. B 69, 045416 (2004).
[CrossRef]

2001 (2)

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105, 1984–1990 (2001).
[CrossRef]

C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
[CrossRef]

2000 (2)

Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys. 88, 201–204 (2000).
[CrossRef]

D. S. Ginley and C. Bright, “Transparent conducting oxides,” Mater. Res. Soc. Bull. 25, 15–18 (2000).

1999 (1)

W. T. Lim and C. H. Lee, “Highly oriented ZnO thin films deposited on RuSi substrates,” Thin Solid Films 353, 12–15 (1999).
[CrossRef]

1998 (2)

P. L. Washington, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry,” Appl. Phys. Lett. 72, 3261–3263 (1998).
[CrossRef]

J. C. Hsu and C. C. Lee, “Single- and dual-ion-beam sputter deposition of titanium oxide films,” Appl. Opt. 37, 1171–1176 (1998).
[CrossRef]

1994 (2)

G. Redmond, D. Fitzmaurice, and M. Graetzel, “Visible light sensitization by cis-bis (thiocyanato) bis (2,2’- bipyridyl-4,4’-dicarboxylato) ruthenium(II) of a transparent nanocrystalline ZnO film prepared by Sol-Gel techniques,” Chem. Mater. 6, 686–691 (1994).
[CrossRef]

L. J. Meng, C. P. Moreira de Sá, and M. P. dos Santos, “Study of the structural properties of ZnO thin films by x-ray photoelectron spectroscopy,” Appl. Surf. Sci. 78, 57–61 (1994).
[CrossRef]

1984 (1)

A. M. Clark, E. E. Fejer, A. G. Couper, and G. C. Jones, “Sweetite, a new mineral from Derbyshire,” Mineral Mag. 48, 267–269 (1984).

1979 (1)

1973 (1)

1966 (1)

J. Tauc, R. Grigorovichi, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Baar, A.

V. V. Ratnikov, R. N. Kyutt, S. V. Ivanov, M. P. Scheglov, and A. Baar, “Microstructure and strain of ZnO molecular-beam epitaxial layers on sapphire,” Semiconductors 44, 251–254 (2010).
[CrossRef]

Baban, C.

E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes,” Thin Solid Films 516, 1629–1633 (2008).
[CrossRef]

Bomben, K. D.

J. F. Moulder, W. F. Stickle, P. E. Scbol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronic, Inc., 1995).

Bright, C.

D. S. Ginley and C. Bright, “Transparent conducting oxides,” Mater. Res. Soc. Bull. 25, 15–18 (2000).

Budai, J. D.

Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys. 88, 201–204 (2000).
[CrossRef]

Budianu, E.

E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes,” Thin Solid Films 516, 1629–1633 (2008).
[CrossRef]

Caglar, M.

S. Ilican, Y. Caglar, and M. Caglar, “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method,” J. Optoelectron Adv. Mater. 10, 2578–2583 (2008).

Caglar, Y.

S. Ilican, Y. Caglar, and M. Caglar, “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method,” J. Optoelectron Adv. Mater. 10, 2578–2583 (2008).

Chandrasekhar, H. R.

Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys. 88, 201–204 (2000).
[CrossRef]

Chang, C. T.

C. T. Chang, J. C. Hsu, P. W. Wang, and Y. H. Lin, “ZnO thin films deposited with various oxygen partial pressures by ion beam sputtering at room temperature,” in Proc. OPT’08 (Taiwan Optical Engineering Society, 2008).

Chang, R. P. H.

P. L. Washington, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry,” Appl. Phys. Lett. 72, 3261–3263 (1998).
[CrossRef]

Chen, Y. Y.

Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, “Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition,” Appl. Surf. Sci. 257, 3446–3450 (2011).
[CrossRef]

Chiang, Y. F.

Y. F. Chiang, C. C. Sung, and R. Ro, “Effects of metal buffer layer on characteristics of surface acoustic waves in ZnO/metal/diamond structures,” Appl. Phys. Lett. 96, 154104 (2010).
[CrossRef]

Clark, A. M.

A. M. Clark, E. E. Fejer, A. G. Couper, and G. C. Jones, “Sweetite, a new mineral from Derbyshire,” Mineral Mag. 48, 267–269 (1984).

Couper, A. G.

A. M. Clark, E. E. Fejer, A. G. Couper, and G. C. Jones, “Sweetite, a new mineral from Derbyshire,” Mineral Mag. 48, 267–269 (1984).

Crist, B. V.

B. V. Crist, Handbook of Monochromatic XPS Spectra (Wiley, 2000).

Cullity, B. D.

B. D. Cullity, Elements of X-ray Diffractions (Addison-Wesley, 1978).

Dai, J. Y.

P. L. Washington, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry,” Appl. Phys. Lett. 72, 3261–3263 (1998).
[CrossRef]

Delaunay, J. J.

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett. 94, 023110 (2009).
[CrossRef]

dos Santos, M. P.

L. J. Meng, C. P. Moreira de Sá, and M. P. dos Santos, “Study of the structural properties of ZnO thin films by x-ray photoelectron spectroscopy,” Appl. Surf. Sci. 78, 57–61 (1994).
[CrossRef]

Fejer, E. E.

A. M. Clark, E. E. Fejer, A. G. Couper, and G. C. Jones, “Sweetite, a new mineral from Derbyshire,” Mineral Mag. 48, 267–269 (1984).

Ferrari, S.

N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, “Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition,” Appl. Phys. Lett. 92, 023502 (2008).
[CrossRef]

Fitzmaurice, D.

G. Redmond, D. Fitzmaurice, and M. Graetzel, “Visible light sensitization by cis-bis (thiocyanato) bis (2,2’- bipyridyl-4,4’-dicarboxylato) ruthenium(II) of a transparent nanocrystalline ZnO film prepared by Sol-Gel techniques,” Chem. Mater. 6, 686–691 (1994).
[CrossRef]

Fujishima, A.

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105, 1984–1990 (2001).
[CrossRef]

Fukui, K. I.

X. Shao, K. I. Fukui, H. Kondoh, M. Shionoya, and Y. Iwasawa, “STM study of surface species formed by methanol adsorption on stoichiometric and reduced ZnO(101¯0) surfaces,” J. Phys. Chem. C 113, 14356–14362 (2009).
[CrossRef]

Ginley, D. S.

D. S. Ginley and C. Bright, “Transparent conducting oxides,” Mater. Res. Soc. Bull. 25, 15–18 (2000).

Godlewski, M.

N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, “Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition,” Appl. Phys. Lett. 92, 023502 (2008).
[CrossRef]

Göthelid, M.

A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, and U. O. Karlsson, “Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase,” J. Phys. Chem. C 114, 11157–11161 (2010).
[CrossRef]

Graetzel, M.

G. Redmond, D. Fitzmaurice, and M. Graetzel, “Visible light sensitization by cis-bis (thiocyanato) bis (2,2’- bipyridyl-4,4’-dicarboxylato) ruthenium(II) of a transparent nanocrystalline ZnO film prepared by Sol-Gel techniques,” Chem. Mater. 6, 686–691 (1994).
[CrossRef]

Grigorovichi, R.

J. Tauc, R. Grigorovichi, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Gupta, V.

R. Menon, V. Gupta, H. H. Tan, K. Sreenivas, and C. Jagadish, “Origin of stress in radio frequency magnetron sputtered zinc oxide thin films,” J. Appl. Phys. 109, 064905 (2011).
[CrossRef]

Guziewicz, E.

N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, “Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition,” Appl. Phys. Lett. 92, 023502 (2008).
[CrossRef]

Hale, G. M.

Hashimoto, K.

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105, 1984–1990 (2001).
[CrossRef]

Hsu, J. C.

Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, “Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition,” Appl. Surf. Sci. 257, 3446–3450 (2011).
[CrossRef]

C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
[CrossRef]

J. C. Hsu and C. C. Lee, “Single- and dual-ion-beam sputter deposition of titanium oxide films,” Appl. Opt. 37, 1171–1176 (1998).
[CrossRef]

C. T. Chang, J. C. Hsu, P. W. Wang, and Y. H. Lin, “ZnO thin films deposited with various oxygen partial pressures by ion beam sputtering at room temperature,” in Proc. OPT’08 (Taiwan Optical Engineering Society, 2008).

Huby, N.

N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, “Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition,” Appl. Phys. Lett. 92, 023502 (2008).
[CrossRef]

Iacomi, F.

E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes,” Thin Solid Films 516, 1629–1633 (2008).
[CrossRef]

Ikeda, K.

S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, “Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition,” Superlattices Microstruct. 39, 306–313 (2006).
[CrossRef]

Ilican, S.

S. Ilican, Y. Caglar, and M. Caglar, “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method,” J. Optoelectron Adv. Mater. 10, 2578–2583 (2008).

Ivanov, S. V.

V. V. Ratnikov, R. N. Kyutt, S. V. Ivanov, M. P. Scheglov, and A. Baar, “Microstructure and strain of ZnO molecular-beam epitaxial layers on sapphire,” Semiconductors 44, 251–254 (2010).
[CrossRef]

Iwasawa, Y.

X. Shao, K. I. Fukui, H. Kondoh, M. Shionoya, and Y. Iwasawa, “STM study of surface species formed by methanol adsorption on stoichiometric and reduced ZnO(101¯0) surfaces,” J. Phys. Chem. C 113, 14356–14362 (2009).
[CrossRef]

Jagadish, C.

R. Menon, V. Gupta, H. H. Tan, K. Sreenivas, and C. Jagadish, “Origin of stress in radio frequency magnetron sputtered zinc oxide thin films,” J. Appl. Phys. 109, 064905 (2011).
[CrossRef]

Jeong, S. S.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53, 2226–2231 (2008).
[CrossRef]

Jones, G. C.

A. M. Clark, E. E. Fejer, A. G. Couper, and G. C. Jones, “Sweetite, a new mineral from Derbyshire,” Mineral Mag. 48, 267–269 (1984).

Karlsson, U. O.

A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, and U. O. Karlsson, “Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase,” J. Phys. Chem. C 114, 11157–11161 (2010).
[CrossRef]

Kishimoto, S.

S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, “Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition,” Superlattices Microstruct. 39, 306–313 (2006).
[CrossRef]

Kondoh, H.

X. Shao, K. I. Fukui, H. Kondoh, M. Shionoya, and Y. Iwasawa, “STM study of surface species formed by methanol adsorption on stoichiometric and reduced ZnO(101¯0) surfaces,” J. Phys. Chem. C 113, 14356–14362 (2009).
[CrossRef]

Kyutt, R. N.

V. V. Ratnikov, R. N. Kyutt, S. V. Ivanov, M. P. Scheglov, and A. Baar, “Microstructure and strain of ZnO molecular-beam epitaxial layers on sapphire,” Semiconductors 44, 251–254 (2010).
[CrossRef]

Lee, C. C.

C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
[CrossRef]

J. C. Hsu and C. C. Lee, “Single- and dual-ion-beam sputter deposition of titanium oxide films,” Appl. Opt. 37, 1171–1176 (1998).
[CrossRef]

Lee, C. H.

W. T. Lim and C. H. Lee, “Highly oriented ZnO thin films deposited on RuSi substrates,” Thin Solid Films 353, 12–15 (1999).
[CrossRef]

Lee, J. H.

J. H. Lee, B. W. Yeo, and B. O. Park, “Effects of the annealing treatment on electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis,” Thin Solid Films 457, 333–337 (2004).
[CrossRef]

Li, Y.

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett. 94, 023110 (2009).
[CrossRef]

Lim, W. T.

W. T. Lim and C. H. Lee, “Highly oriented ZnO thin films deposited on RuSi substrates,” Thin Solid Films 353, 12–15 (1999).
[CrossRef]

Lin, Y. H.

Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, “Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition,” Appl. Surf. Sci. 257, 3446–3450 (2011).
[CrossRef]

C. T. Chang, J. C. Hsu, P. W. Wang, and Y. H. Lin, “ZnO thin films deposited with various oxygen partial pressures by ion beam sputtering at room temperature,” in Proc. OPT’08 (Taiwan Optical Engineering Society, 2008).

Löffler, E.

H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, and M. Muhler, “The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy,” Phys. Chem. Chem. Phys. 10, 7092–7097 (2008).
[CrossRef]

Makino, H.

S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, “Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition,” Superlattices Microstruct. 39, 306–313 (2006).
[CrossRef]

Manea, E.

E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes,” Thin Solid Films 516, 1629–1633 (2008).
[CrossRef]

Mao, S. X.

M. H. Zhao, Z. L. Wang, and S. X. Mao, “Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope,” Nano Lett. 4, 587–590 (2004).
[CrossRef]

Masci, A.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53, 2226–2231 (2008).
[CrossRef]

Meng, L. J.

L. J. Meng, C. P. Moreira de Sá, and M. P. dos Santos, “Study of the structural properties of ZnO thin films by x-ray photoelectron spectroscopy,” Appl. Surf. Sci. 78, 57–61 (1994).
[CrossRef]

Menon, R.

R. Menon, V. Gupta, H. H. Tan, K. Sreenivas, and C. Jagadish, “Origin of stress in radio frequency magnetron sputtered zinc oxide thin films,” J. Appl. Phys. 109, 064905 (2011).
[CrossRef]

Meyer, B.

B. Meyer, “First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen,” Phys. Rev. B 69, 045416 (2004).
[CrossRef]

Miceli, P. F.

Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys. 88, 201–204 (2000).
[CrossRef]

Mittiga, A.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53, 2226–2231 (2008).
[CrossRef]

Moreira de Sá, C. P.

L. J. Meng, C. P. Moreira de Sá, and M. P. dos Santos, “Study of the structural properties of ZnO thin films by x-ray photoelectron spectroscopy,” Appl. Surf. Sci. 78, 57–61 (1994).
[CrossRef]

Moulder, J. F.

J. F. Moulder, W. F. Stickle, P. E. Scbol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronic, Inc., 1995).

Muhler, M.

H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, and M. Muhler, “The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy,” Phys. Chem. Chem. Phys. 10, 7092–7097 (2008).
[CrossRef]

Nakagawa, Y.

S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, “Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition,” Superlattices Microstruct. 39, 306–313 (2006).
[CrossRef]

Nakajima, A.

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105, 1984–1990 (2001).
[CrossRef]

Noei, H.

H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, and M. Muhler, “The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy,” Phys. Chem. Chem. Phys. 10, 7092–7097 (2008).
[CrossRef]

Ong, H. C.

P. L. Washington, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry,” Appl. Phys. Lett. 72, 3261–3263 (1998).
[CrossRef]

Önsten, A.

A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, and U. O. Karlsson, “Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase,” J. Phys. Chem. C 114, 11157–11161 (2010).
[CrossRef]

Osinniy, V.

N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, “Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition,” Appl. Phys. Lett. 92, 023502 (2008).
[CrossRef]

Pai, Y. W.

Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, “Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition,” Appl. Surf. Sci. 257, 3446–3450 (2011).
[CrossRef]

Palmgren, P.

A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, and U. O. Karlsson, “Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase,” J. Phys. Chem. C 114, 11157–11161 (2010).
[CrossRef]

Park, B. O.

J. H. Lee, B. W. Yeo, and B. O. Park, “Effects of the annealing treatment on electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis,” Thin Solid Films 457, 333–337 (2004).
[CrossRef]

Passerini, S.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53, 2226–2231 (2008).
[CrossRef]

Prepelita, P.

E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes,” Thin Solid Films 516, 1629–1633 (2008).
[CrossRef]

Pulker, H. K.

Purica, M.

E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes,” Thin Solid Films 516, 1629–1633 (2008).
[CrossRef]

Qiu, H.

H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, and M. Muhler, “The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy,” Phys. Chem. Chem. Phys. 10, 7092–7097 (2008).
[CrossRef]

Querry, M. R.

Ratnikov, V. V.

V. V. Ratnikov, R. N. Kyutt, S. V. Ivanov, M. P. Scheglov, and A. Baar, “Microstructure and strain of ZnO molecular-beam epitaxial layers on sapphire,” Semiconductors 44, 251–254 (2010).
[CrossRef]

Redmond, G.

G. Redmond, D. Fitzmaurice, and M. Graetzel, “Visible light sensitization by cis-bis (thiocyanato) bis (2,2’- bipyridyl-4,4’-dicarboxylato) ruthenium(II) of a transparent nanocrystalline ZnO film prepared by Sol-Gel techniques,” Chem. Mater. 6, 686–691 (1994).
[CrossRef]

Ro, R.

Y. F. Chiang, C. C. Sung, and R. Ro, “Effects of metal buffer layer on characteristics of surface acoustic waves in ZnO/metal/diamond structures,” Appl. Phys. Lett. 96, 154104 (2010).
[CrossRef]

Ryu, Y. R.

Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys. 88, 201–204 (2000).
[CrossRef]

Salza, E.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53, 2226–2231 (2008).
[CrossRef]

Scbol, P. E.

J. F. Moulder, W. F. Stickle, P. E. Scbol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronic, Inc., 1995).

Scheglov, M. P.

V. V. Ratnikov, R. N. Kyutt, S. V. Ivanov, M. P. Scheglov, and A. Baar, “Microstructure and strain of ZnO molecular-beam epitaxial layers on sapphire,” Semiconductors 44, 251–254 (2010).
[CrossRef]

Shao, X.

X. Shao, K. I. Fukui, H. Kondoh, M. Shionoya, and Y. Iwasawa, “STM study of surface species formed by methanol adsorption on stoichiometric and reduced ZnO(101¯0) surfaces,” J. Phys. Chem. C 113, 14356–14362 (2009).
[CrossRef]

Shionoya, M.

X. Shao, K. I. Fukui, H. Kondoh, M. Shionoya, and Y. Iwasawa, “STM study of surface species formed by methanol adsorption on stoichiometric and reduced ZnO(101¯0) surfaces,” J. Phys. Chem. C 113, 14356–14362 (2009).
[CrossRef]

Simonnet, M.

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett. 94, 023110 (2009).
[CrossRef]

Sreenivas, K.

R. Menon, V. Gupta, H. H. Tan, K. Sreenivas, and C. Jagadish, “Origin of stress in radio frequency magnetron sputtered zinc oxide thin films,” J. Appl. Phys. 109, 064905 (2011).
[CrossRef]

Stickle, W. F.

J. F. Moulder, W. F. Stickle, P. E. Scbol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronic, Inc., 1995).

Stoltz, D.

A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, and U. O. Karlsson, “Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase,” J. Phys. Chem. C 114, 11157–11161 (2010).
[CrossRef]

Sun, R. D.

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105, 1984–1990 (2001).
[CrossRef]

Sung, C. C.

Y. F. Chiang, C. C. Sung, and R. Ro, “Effects of metal buffer layer on characteristics of surface acoustic waves in ZnO/metal/diamond structures,” Appl. Phys. Lett. 96, 154104 (2010).
[CrossRef]

Tan, H. H.

R. Menon, V. Gupta, H. H. Tan, K. Sreenivas, and C. Jagadish, “Origin of stress in radio frequency magnetron sputtered zinc oxide thin films,” J. Appl. Phys. 109, 064905 (2011).
[CrossRef]

Tauc, J.

J. Tauc, R. Grigorovichi, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Valle, F. D.

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett. 94, 023110 (2009).
[CrossRef]

Vancu, A.

J. Tauc, R. Grigorovichi, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Wang, P. W.

Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, “Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition,” Appl. Surf. Sci. 257, 3446–3450 (2011).
[CrossRef]

C. T. Chang, J. C. Hsu, P. W. Wang, and Y. H. Lin, “ZnO thin films deposited with various oxygen partial pressures by ion beam sputtering at room temperature,” in Proc. OPT’08 (Taiwan Optical Engineering Society, 2008).

Wang, Y.

H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, and M. Muhler, “The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy,” Phys. Chem. Chem. Phys. 10, 7092–7097 (2008).
[CrossRef]

Wang, Z. L.

M. H. Zhao, Z. L. Wang, and S. X. Mao, “Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope,” Nano Lett. 4, 587–590 (2004).
[CrossRef]

Washington, P. L.

P. L. Washington, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry,” Appl. Phys. Lett. 72, 3261–3263 (1998).
[CrossRef]

Watanabe, T.

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105, 1984–1990 (2001).
[CrossRef]

White, H. W.

Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys. 88, 201–204 (2000).
[CrossRef]

Wöll, C.

H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, and M. Muhler, “The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy,” Phys. Chem. Chem. Phys. 10, 7092–7097 (2008).
[CrossRef]

Wong, D. H.

C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
[CrossRef]

Wu, C. Y.

Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, “Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition,” Appl. Surf. Sci. 257, 3446–3450 (2011).
[CrossRef]

Yamada, I.

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett. 94, 023110 (2009).
[CrossRef]

Yamada, T.

S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, “Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition,” Superlattices Microstruct. 39, 306–313 (2006).
[CrossRef]

Yamamoto, T.

S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, “Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition,” Superlattices Microstruct. 39, 306–313 (2006).
[CrossRef]

Yeo, B. W.

J. H. Lee, B. W. Yeo, and B. O. Park, “Effects of the annealing treatment on electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis,” Thin Solid Films 457, 333–337 (2004).
[CrossRef]

Yu, S.

A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, and U. O. Karlsson, “Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase,” J. Phys. Chem. C 114, 11157–11161 (2010).
[CrossRef]

Zhao, M. H.

M. H. Zhao, Z. L. Wang, and S. X. Mao, “Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope,” Nano Lett. 4, 587–590 (2004).
[CrossRef]

Zhu, S.

Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys. 88, 201–204 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett. 94, 023110 (2009).
[CrossRef]

P. L. Washington, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry,” Appl. Phys. Lett. 72, 3261–3263 (1998).
[CrossRef]

N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, “Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition,” Appl. Phys. Lett. 92, 023502 (2008).
[CrossRef]

Y. F. Chiang, C. C. Sung, and R. Ro, “Effects of metal buffer layer on characteristics of surface acoustic waves in ZnO/metal/diamond structures,” Appl. Phys. Lett. 96, 154104 (2010).
[CrossRef]

Appl. Surf. Sci. (3)

Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, “Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition,” Appl. Surf. Sci. 257, 3446–3450 (2011).
[CrossRef]

C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
[CrossRef]

L. J. Meng, C. P. Moreira de Sá, and M. P. dos Santos, “Study of the structural properties of ZnO thin films by x-ray photoelectron spectroscopy,” Appl. Surf. Sci. 78, 57–61 (1994).
[CrossRef]

Chem. Mater. (1)

G. Redmond, D. Fitzmaurice, and M. Graetzel, “Visible light sensitization by cis-bis (thiocyanato) bis (2,2’- bipyridyl-4,4’-dicarboxylato) ruthenium(II) of a transparent nanocrystalline ZnO film prepared by Sol-Gel techniques,” Chem. Mater. 6, 686–691 (1994).
[CrossRef]

Electrochim. Acta (1)

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53, 2226–2231 (2008).
[CrossRef]

J. Appl. Phys. (2)

R. Menon, V. Gupta, H. H. Tan, K. Sreenivas, and C. Jagadish, “Origin of stress in radio frequency magnetron sputtered zinc oxide thin films,” J. Appl. Phys. 109, 064905 (2011).
[CrossRef]

Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys. 88, 201–204 (2000).
[CrossRef]

J. Optoelectron Adv. Mater. (1)

S. Ilican, Y. Caglar, and M. Caglar, “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method,” J. Optoelectron Adv. Mater. 10, 2578–2583 (2008).

J. Phys. Chem. B (1)

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105, 1984–1990 (2001).
[CrossRef]

J. Phys. Chem. C (2)

X. Shao, K. I. Fukui, H. Kondoh, M. Shionoya, and Y. Iwasawa, “STM study of surface species formed by methanol adsorption on stoichiometric and reduced ZnO(101¯0) surfaces,” J. Phys. Chem. C 113, 14356–14362 (2009).
[CrossRef]

A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, and U. O. Karlsson, “Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase,” J. Phys. Chem. C 114, 11157–11161 (2010).
[CrossRef]

Mater. Res. Soc. Bull. (1)

D. S. Ginley and C. Bright, “Transparent conducting oxides,” Mater. Res. Soc. Bull. 25, 15–18 (2000).

Mineral Mag. (1)

A. M. Clark, E. E. Fejer, A. G. Couper, and G. C. Jones, “Sweetite, a new mineral from Derbyshire,” Mineral Mag. 48, 267–269 (1984).

Nano Lett. (1)

M. H. Zhao, Z. L. Wang, and S. X. Mao, “Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope,” Nano Lett. 4, 587–590 (2004).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, and M. Muhler, “The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy,” Phys. Chem. Chem. Phys. 10, 7092–7097 (2008).
[CrossRef]

Phys. Rev. B (1)

B. Meyer, “First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen,” Phys. Rev. B 69, 045416 (2004).
[CrossRef]

Phys. Status Solidi (1)

J. Tauc, R. Grigorovichi, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Semiconductors (1)

V. V. Ratnikov, R. N. Kyutt, S. V. Ivanov, M. P. Scheglov, and A. Baar, “Microstructure and strain of ZnO molecular-beam epitaxial layers on sapphire,” Semiconductors 44, 251–254 (2010).
[CrossRef]

Superlattices Microstruct. (1)

S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, “Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition,” Superlattices Microstruct. 39, 306–313 (2006).
[CrossRef]

Thin Solid Films (3)

E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes,” Thin Solid Films 516, 1629–1633 (2008).
[CrossRef]

J. H. Lee, B. W. Yeo, and B. O. Park, “Effects of the annealing treatment on electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis,” Thin Solid Films 457, 333–337 (2004).
[CrossRef]

W. T. Lim and C. H. Lee, “Highly oriented ZnO thin films deposited on RuSi substrates,” Thin Solid Films 353, 12–15 (1999).
[CrossRef]

Other (5)

B. V. Crist, Handbook of Monochromatic XPS Spectra (Wiley, 2000).

C. T. Chang, J. C. Hsu, P. W. Wang, and Y. H. Lin, “ZnO thin films deposited with various oxygen partial pressures by ion beam sputtering at room temperature,” in Proc. OPT’08 (Taiwan Optical Engineering Society, 2008).

J. F. Moulder, W. F. Stickle, P. E. Scbol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronic, Inc., 1995).

J. A. Woollam Co. Inc., Guide to Using WVASE32 (J. A. Woollam Co. Inc., 2008).

B. D. Cullity, Elements of X-ray Diffractions (Addison-Wesley, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

XRD patterns of ZnO films deposited under various oxygen partial pressures are shown in the inset. The only (002) peaks of ZnO-10, -12, and -20 films have the different shapes and positions.

Fig. 2.
Fig. 2.

Transmittance spectra of the ZnO thin films fabricated under various oxygen partial pressures.

Fig. 3.
Fig. 3.

Plot of ((αhν)2 as a function of photon energy (hν) with respect to ZnO-10, -12, and -20 films. The three bandgaps acquired by the three tangent lines are drawn through the curve edges and extend to intersect the photon energy axis.

Fig. 4.
Fig. 4.

ZnO-10, -12, and -20 have different XPS of (a) Zn 2p3/2 and (b) O 1 s core levels, respectively, before ion sputtering.

Fig. 5.
Fig. 5.

ZnO-10, -12, and -20 have different XPS of (a) Zn 2p3/2 and (b) O 1 s core levels, respectively, after ion sputtering.

Fig. 6.
Fig. 6.

The surface morphologies of ZnO-10, -12, and -20, measured by AFM.

Fig. 7.
Fig. 7.

Measured (dashed lines) and calculated (solid lines) ψ and Δ spectra of ZnO-12 film at three incident angles of 60°, 65°, and 70°, respectively. The inset is the ellipsometric model of the film.

Tables (4)

Tables Icon

Table 1. Concentrations of ZnO-10, -12, and -20 Samples Analyzed from the XPS Data Before and After Argon Ion Sputtering

Tables Icon

Table 2. Concentrations of ZnO-10, -12, and -20 Samples Analyzed from the O 1 s XPS Data Before and After Argon Ion Sputtering

Tables Icon

Table 3. XRD Peaks of ZnO-10, -12, and -20 are Fitted by Gaussian Functions Represented by the Diffraction Angles, Heights, and FWHMs

Tables Icon

Table 4. Comparing with the Optical Properties of ZnO-10, -12, and -20 Fitted by Ellipsometric Software

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n(λ)=A+Bλ2+Cλ4,
k(λ)=αe1240β(1λ1γ),

Metrics