Abstract

In this work a new superstructured, in-fiber Bragg grating (FBG)-based, contact force sensor is presented that is based on birefringent D-shape optical fiber. The sensor superstructure comprises a polyimide sheath, a stress-concentrating feature, and an alignment feature that repeatably orients the sensor with respect to contact forces. A combination of plane elasticity and strain-optic models is used to predict sensor performance in terms of sensitivity to contact force and axial strain. Model predictions are validated through experimental calibration and indicate contact force, axial strain, and temperature sensitivities of 169.6pm/(N/mm), 0.01pm/με, and 1.12pm/°C in terms of spectral separation. The sensor addresses challenges associated with contact force sensors that are based on FBGs in birefringent fiber, FBGs in conventional optical fiber, and tilted FBGs. Relative to other birefringent fiber sensors, the sensor has contact force sensitivity comparable to the highest sensitivity of commercially available birefringent fibers and, unlike other birefringent fiber sensors, is self-aligning with respect to contact forces. Unlike sensors based on Bragg gratings in conventional fiber and tilted Bragg gratings, the sensor has minimal cosensitivity to both axial strain and changes in temperature.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Structural Health Monitoring with Fiber Optic Technology (Academic, 2001).
  2. E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
    [CrossRef]
  3. K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
    [CrossRef]
  4. A. J. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19, 834–839 (1983).
    [CrossRef]
  5. E. Udd, D. Nelson, and C. Lawrence, “Three axis strain and temperature fiber optic grating sensor,” Proc. SPIE 2718, 104–109 (1996).
    [CrossRef]
  6. L. Y. Shao, Q. Jiang, and J. Albert, “Fiber optic pressure sensing with conforming elastomers,” Appl. Opt. 49, 6784–6788 (2010).
    [CrossRef]
  7. P. Wierzba and B. B. Kosmowski, “Application of polarisation-maintaining side-hole fibres to direct force measurement,” Opto-Electron. Rev. 11, 305–311 (2003).
  8. C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
    [CrossRef]
  9. V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sensors Actuators A 167, 279–290 (2011).
    [CrossRef]
  10. L. Mohanty, S. C. Tjin, D. T. T. Lie, S. E. C. Panganiban, and P. K. H. Chow, “Fiber grating sensor for pressure mapping during total knee arthroplasty,” Sensors Actuators A 135, 323–328 (2007).
    [CrossRef]
  11. C. R. Dennison, P. M. Wild, D. R. Wilson, and M. K. Gilbart, “An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints,” Meas. Sci. Technol. 21, 115803 (2010).
    [CrossRef]
  12. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  13. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
    [CrossRef]
  14. I. Abe, O. Frazao, M. W. Schiller, R. N. Noqueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477–1484 (2006).
    [CrossRef]
  15. A. Mendez and T. F. Morse, Specialty Optical Fibers Handbook (Academic, 2007).
  16. A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun. 61, 195–198 (1987).
    [CrossRef]
  17. W. Urbanczyk, T. Martynkien, and W. J. Bock, “Dispersion effects in elliptical-core highly birefringent fibers,” Appl. Opt. 40, 1911–1920 (2001).
    [CrossRef]
  18. K. L. Johnson, Contact Mechanics (Cambridge University, 1987).
  19. M. G. Xu, H. Geiger, and J. P. Dakin, “Fibre grating pressure sensor with enhanced sensitivity using a glass-bubble housing,” Electron. Lett. 32, 128–129 (1996).
    [CrossRef]
  20. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
    [CrossRef]
  21. T. Yamate, R. T. Ramos, R. J. Schroeder, and E. Udd, “Thermally insensitive pressure measurements up to 300 °C using fiber Bragg gratings written onto side hole single mode fiber,” Proc. SPIE 4185, 628–632 (2000).
  22. R. L. Norton, Machine Design: An Integrated Approach(Prentice-Hall, 2000).
  23. S. Huang, M. LeBlanc, M. M. Ohn, and R. M. Measures, “Bragg intragrating structural sensing,” Appl. Opt. 34, 5003–5009 (1995).
    [CrossRef]

2011

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sensors Actuators A 167, 279–290 (2011).
[CrossRef]

2010

C. R. Dennison, P. M. Wild, D. R. Wilson, and M. K. Gilbart, “An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints,” Meas. Sci. Technol. 21, 115803 (2010).
[CrossRef]

L. Y. Shao, Q. Jiang, and J. Albert, “Fiber optic pressure sensing with conforming elastomers,” Appl. Opt. 49, 6784–6788 (2010).
[CrossRef]

2007

L. Mohanty, S. C. Tjin, D. T. T. Lie, S. E. C. Panganiban, and P. K. H. Chow, “Fiber grating sensor for pressure mapping during total knee arthroplasty,” Sensors Actuators A 135, 323–328 (2007).
[CrossRef]

2006

I. Abe, O. Frazao, M. W. Schiller, R. N. Noqueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477–1484 (2006).
[CrossRef]

2004

E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

2003

P. Wierzba and B. B. Kosmowski, “Application of polarisation-maintaining side-hole fibres to direct force measurement,” Opto-Electron. Rev. 11, 305–311 (2003).

2001

2000

T. Yamate, R. T. Ramos, R. J. Schroeder, and E. Udd, “Thermally insensitive pressure measurements up to 300 °C using fiber Bragg gratings written onto side hole single mode fiber,” Proc. SPIE 4185, 628–632 (2000).

1996

E. Udd, D. Nelson, and C. Lawrence, “Three axis strain and temperature fiber optic grating sensor,” Proc. SPIE 2718, 104–109 (1996).
[CrossRef]

M. G. Xu, H. Geiger, and J. P. Dakin, “Fibre grating pressure sensor with enhanced sensitivity using a glass-bubble housing,” Electron. Lett. 32, 128–129 (1996).
[CrossRef]

1995

1993

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

1987

A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun. 61, 195–198 (1987).
[CrossRef]

1986

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

1983

A. J. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19, 834–839 (1983).
[CrossRef]

1981

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
[CrossRef]

1978

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Abe, I.

I. Abe, O. Frazao, M. W. Schiller, R. N. Noqueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477–1484 (2006).
[CrossRef]

Albert, J.

Barlow, A. J.

A. J. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19, 834–839 (1983).
[CrossRef]

Bartelt, H.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Becker, M.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Berghmans, F.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Bock, W. J.

Chehura, E.

E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Chow, P. K. H.

L. Mohanty, S. C. Tjin, D. T. T. Lie, S. E. C. Panganiban, and P. K. H. Chow, “Fiber grating sensor for pressure mapping during total knee arthroplasty,” Sensors Actuators A 135, 323–328 (2007).
[CrossRef]

Chow, Y. T.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Dakin, J. P.

M. G. Xu, H. Geiger, and J. P. Dakin, “Fibre grating pressure sensor with enhanced sensitivity using a glass-bubble housing,” Electron. Lett. 32, 128–129 (1996).
[CrossRef]

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Degrieck, J.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Dennison, C. R.

C. R. Dennison, P. M. Wild, D. R. Wilson, and M. K. Gilbart, “An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints,” Meas. Sci. Technol. 21, 115803 (2010).
[CrossRef]

Edahiro, T.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
[CrossRef]

Eve, S.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Frazao, O.

I. Abe, O. Frazao, M. W. Schiller, R. N. Noqueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477–1484 (2006).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Geernaert, T.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Geiger, H.

M. G. Xu, H. Geiger, and J. P. Dakin, “Fibre grating pressure sensor with enhanced sensitivity using a glass-bubble housing,” Electron. Lett. 32, 128–129 (1996).
[CrossRef]

Gilbart, M. K.

C. R. Dennison, P. M. Wild, D. R. Wilson, and M. K. Gilbart, “An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints,” Meas. Sci. Technol. 21, 115803 (2010).
[CrossRef]

Gupta, V.

A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun. 61, 195–198 (1987).
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Hosaka, T.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
[CrossRef]

Huang, S.

James, S. W.

E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Jiang, Q.

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Johnson, K. L.

K. L. Johnson, Contact Mechanics (Cambridge University, 1987).

Kalinowski, H. J.

I. Abe, O. Frazao, M. W. Schiller, R. N. Noqueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477–1484 (2006).
[CrossRef]

Kapur, P.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sensors Actuators A 167, 279–290 (2011).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kosmowski, B. B.

P. Wierzba and B. B. Kosmowski, “Application of polarisation-maintaining side-hole fibres to direct force measurement,” Opto-Electron. Rev. 11, 305–311 (2003).

Kumar, A.

A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun. 61, 195–198 (1987).
[CrossRef]

Lammens, N.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Lawrence, C.

E. Udd, D. Nelson, and C. Lawrence, “Three axis strain and temperature fiber optic grating sensor,” Proc. SPIE 2718, 104–109 (1996).
[CrossRef]

LeBlanc, M.

Lie, D. T. T.

L. Mohanty, S. C. Tjin, D. T. T. Lie, S. E. C. Panganiban, and P. K. H. Chow, “Fiber grating sensor for pressure mapping during total knee arthroplasty,” Sensors Actuators A 135, 323–328 (2007).
[CrossRef]

Luyckx, G.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Martynkien, T.

Measures, R. M.

Mendez, A.

A. Mendez and T. F. Morse, Specialty Optical Fibers Handbook (Academic, 2007).

Mergo, P.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Mishra, V.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sensors Actuators A 167, 279–290 (2011).
[CrossRef]

Mohanty, L.

L. Mohanty, S. C. Tjin, D. T. T. Lie, S. E. C. Panganiban, and P. K. H. Chow, “Fiber grating sensor for pressure mapping during total knee arthroplasty,” Sensors Actuators A 135, 323–328 (2007).
[CrossRef]

Morse, T. F.

A. Mendez and T. F. Morse, Specialty Optical Fibers Handbook (Academic, 2007).

Nelson, D.

E. Udd, D. Nelson, and C. Lawrence, “Three axis strain and temperature fiber optic grating sensor,” Proc. SPIE 2718, 104–109 (1996).
[CrossRef]

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

Noqueira, R. N.

I. Abe, O. Frazao, M. W. Schiller, R. N. Noqueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477–1484 (2006).
[CrossRef]

Norton, R. L.

R. L. Norton, Machine Design: An Integrated Approach(Prentice-Hall, 2000).

Ohn, M. M.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
[CrossRef]

Panganiban, S. E. C.

L. Mohanty, S. C. Tjin, D. T. T. Lie, S. E. C. Panganiban, and P. K. H. Chow, “Fiber grating sensor for pressure mapping during total knee arthroplasty,” Sensors Actuators A 135, 323–328 (2007).
[CrossRef]

Payne, D.

A. J. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19, 834–839 (1983).
[CrossRef]

Pinto, J. L.

I. Abe, O. Frazao, M. W. Schiller, R. N. Noqueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477–1484 (2006).
[CrossRef]

Ramos, R. T.

T. Yamate, R. T. Ramos, R. J. Schroeder, and E. Udd, “Thermally insensitive pressure measurements up to 300 °C using fiber Bragg gratings written onto side hole single mode fiber,” Proc. SPIE 4185, 628–632 (2000).

Reekie, L.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

Schiller, M. W.

I. Abe, O. Frazao, M. W. Schiller, R. N. Noqueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477–1484 (2006).
[CrossRef]

Schroeder, R. J.

T. Yamate, R. T. Ramos, R. J. Schroeder, and E. Udd, “Thermally insensitive pressure measurements up to 300 °C using fiber Bragg gratings written onto side hole single mode fiber,” Proc. SPIE 4185, 628–632 (2000).

Shao, L. Y.

Singh, N.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sensors Actuators A 167, 279–290 (2011).
[CrossRef]

Sonnenfeld, C.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Staines, S. E.

E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Sulejmani, S.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Tatam, R. P.

E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Thienpont, H.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Thyagarajan, K.

A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun. 61, 195–198 (1987).
[CrossRef]

Tiwari, U.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sensors Actuators A 167, 279–290 (2011).
[CrossRef]

Tjin, S. C.

L. Mohanty, S. C. Tjin, D. T. T. Lie, S. E. C. Panganiban, and P. K. H. Chow, “Fiber grating sensor for pressure mapping during total knee arthroplasty,” Sensors Actuators A 135, 323–328 (2007).
[CrossRef]

Udd, E.

T. Yamate, R. T. Ramos, R. J. Schroeder, and E. Udd, “Thermally insensitive pressure measurements up to 300 °C using fiber Bragg gratings written onto side hole single mode fiber,” Proc. SPIE 4185, 628–632 (2000).

E. Udd, D. Nelson, and C. Lawrence, “Three axis strain and temperature fiber optic grating sensor,” Proc. SPIE 2718, 104–109 (1996).
[CrossRef]

Urbanczyk, W.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

W. Urbanczyk, T. Martynkien, and W. J. Bock, “Dispersion effects in elliptical-core highly birefringent fibers,” Appl. Opt. 40, 1911–1920 (2001).
[CrossRef]

Voet, E.

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Wierzba, P.

P. Wierzba and B. B. Kosmowski, “Application of polarisation-maintaining side-hole fibres to direct force measurement,” Opto-Electron. Rev. 11, 305–311 (2003).

Wild, P. M.

C. R. Dennison, P. M. Wild, D. R. Wilson, and M. K. Gilbart, “An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints,” Meas. Sci. Technol. 21, 115803 (2010).
[CrossRef]

Wilson, D. R.

C. R. Dennison, P. M. Wild, D. R. Wilson, and M. K. Gilbart, “An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints,” Meas. Sci. Technol. 21, 115803 (2010).
[CrossRef]

Xu, M. G.

M. G. Xu, H. Geiger, and J. P. Dakin, “Fibre grating pressure sensor with enhanced sensitivity using a glass-bubble housing,” Electron. Lett. 32, 128–129 (1996).
[CrossRef]

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Yamate, T.

T. Yamate, R. T. Ramos, R. J. Schroeder, and E. Udd, “Thermally insensitive pressure measurements up to 300 °C using fiber Bragg gratings written onto side hole single mode fiber,” Proc. SPIE 4185, 628–632 (2000).

Ye, C.-C.

E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Electron. Lett.

M. G. Xu, H. Geiger, and J. P. Dakin, “Fibre grating pressure sensor with enhanced sensitivity using a glass-bubble housing,” Electron. Lett. 32, 128–129 (1996).
[CrossRef]

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

IEEE J. Quantum Electron.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
[CrossRef]

A. J. Barlow and D. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19, 834–839 (1983).
[CrossRef]

J. Lightwave Technol.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

Meas. Sci. Technol.

I. Abe, O. Frazao, M. W. Schiller, R. N. Noqueira, H. J. Kalinowski, and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics,” Meas. Sci. Technol. 17, 1477–1484 (2006).
[CrossRef]

C. R. Dennison, P. M. Wild, D. R. Wilson, and M. K. Gilbart, “An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints,” Meas. Sci. Technol. 21, 115803 (2010).
[CrossRef]

Opt. Commun.

A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun. 61, 195–198 (1987).
[CrossRef]

Opto-Electron. Rev.

P. Wierzba and B. B. Kosmowski, “Application of polarisation-maintaining side-hole fibres to direct force measurement,” Opto-Electron. Rev. 11, 305–311 (2003).

Proc. SPIE

E. Udd, D. Nelson, and C. Lawrence, “Three axis strain and temperature fiber optic grating sensor,” Proc. SPIE 2718, 104–109 (1996).
[CrossRef]

T. Yamate, R. T. Ramos, R. J. Schroeder, and E. Udd, “Thermally insensitive pressure measurements up to 300 °C using fiber Bragg gratings written onto side hole single mode fiber,” Proc. SPIE 4185, 628–632 (2000).

Sensors

C. Sonnenfeld, S. Sulejmani, T. Geernaert, S. Eve, N. Lammens, G. Luyckx, E. Voet, J. Degrieck, W. Urbanczyk, P. Mergo, M. Becker, H. Bartelt, F. Berghmans, and H. Thienpont, “Microstructured optical fiber sensors embedded in a laminate composite for smart material applications,” Sensors 11, 2566–2579 (2011).
[CrossRef]

Sensors Actuators A

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sensors Actuators A 167, 279–290 (2011).
[CrossRef]

L. Mohanty, S. C. Tjin, D. T. T. Lie, S. E. C. Panganiban, and P. K. H. Chow, “Fiber grating sensor for pressure mapping during total knee arthroplasty,” Sensors Actuators A 135, 323–328 (2007).
[CrossRef]

Smart Mater. Struct.

E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Other

R. M. Measures, Structural Health Monitoring with Fiber Optic Technology (Academic, 2001).

K. L. Johnson, Contact Mechanics (Cambridge University, 1987).

A. Mendez and T. F. Morse, Specialty Optical Fibers Handbook (Academic, 2007).

R. L. Norton, Machine Design: An Integrated Approach(Prentice-Hall, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Schematic of D-shape fiber showing the clad, core, and Bragg grating comprising regions of modified refractive index n spaced with period Λ. (b) Schematic of D-shape fiber showing the fiber axis, slow axis, and fast axis.

Fig. 2.
Fig. 2.

(a) Photograph showing the overall construction of the superstructured D-shape sensor. (b) Close-up view of a short segment of sensor length. (c) Photograph showing nitinol wire and fiber emerging from polyimide sheath. (d) Schematic cross section of superstructured D-shape sensor. (e) Contact forces F are applied to the outside of the sheath and are aligned with the internal features of the sensor as shown.

Fig. 3.
Fig. 3.

(a) Schematic showing contact force F applied to elastic half-space with zero stress boundary condition at regions far from coordinate system origin. (b) Schematic showing D-shape fiber cross section as an elastic half-space.

Fig. 4.
Fig. 4.

(a) Schematic showing relevant features of contact force calibration apparatus. Schematic showing forces applied to force sensor (b) without alignment feature and (c) with alignment feature.

Fig. 5.
Fig. 5.

Bragg spectra for the fast and slow axes recorded using the optical spectrum analyzer.

Fig. 6.
Fig. 6.

(a) Predicted sensitivities of the fast- and slow-axis Bragg wavelengths obtained from the half-space/strain-optic model. (b) Measured wavelength shifts of the fast- and slow-axis Bragg wavelengths for the sensor without the alignment feature. Error bars are not visible at given scale but convey nonrepeatability of contact force measurements (±0.02N/mm) and observed nonrepeatability of wavelength shift measurements (mean of ±1pm for all data points presented) from optical spectrum analyzer.

Fig. 7.
Fig. 7.

Measured wavelength shifts of fast- and slow-axis Bragg wavelengths for contact force sensor with alignment feature (trial 1 in Table 1). Error bars (±0.02N/mm and ±1pm) are not visible at the given scale.

Fig. 8.
Fig. 8.

(a) Predicted sensitivities to axial strain of the fast- and slow-axis Bragg wavelengths obtained from the strain/strain-optic model. (b) Measured (trial 2) wavelength shifts of the fast- and slow-axis Bragg wavelengths. Error bars are not clearly visible at given scale but convey nonrepeatability of axial strain values (±1.69με) and observed nonrepeatability of wavelength shift measurements (mean of ±1pm for all data points presented).

Fig. 9.
Fig. 9.

Measured (trial 1) fast- and slow-axis Bragg wavelengths versus temperature for the contact force sensor with the alignment feature. Sensitivities are reported as slope from regressions (dashed lines). Error bars shown are not clearly visible at given scale but convey nonrepeatability of thermocouple measurements (±0.1°C) and observed nonrepeatability of wavelength shift measurements (mean of ±1pm for all data points presented) from optical spectrum analyzer.

Tables (1)

Tables Icon

Table 1. Summary of Experimental Results for Slow- and Fast-Axis Sensitivity to Contact Force, Axial Strain, and Temperature of Contact Force Sensorsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λsλf=2Λ(nsnf)=2ΛB,
B=nsnf=BG+BIS+BE,
Δλs=λs[εzns22(pxzεz+pxxεx+pxyεy)],Δλf=λf[εznf22(pyzεz+pyxεx+pyyεy)],
σx=2Fπx2y(x2+y2)2;σx=2Fπx2y(x2+y2)2σy=2Fπy3(x2+y2)2;σy=2Fπy3(x2+y2)2τxy=2Fπxy2(x2+y2)2;τxy=2Fπxy2(x2+y2)2
σx=2Fπ[x12y1(x12+y12)2+x22y2(x22+y22)2],σy=2Fπ[y13(x12+y12)2+y23(x22+y22)2],τxy=2Fπ[x1y12(x12+y12)2+x2y22(x22+y22)2],
σx=0,σy=2Fπ(1yc+1yc),τxy=0,
εx=1E[(1ν2)σxν(1+ν)σy]=ν(1+ν)σyE,εy=1E[(1ν2)σyν(1+ν)σx]=(1ν2)σyE,γxy=2(1+ν)Eτxy=0,

Metrics