Abstract

In active scalar polarimetric imaging systems, the illumination and analysis polarization states are degrees of freedom that can be used to maximize the performance. These optimal states depend on the statistics of the noise that perturbs image acquisition. We investigate the problem of optimization of discrimination ability (contrast) of such imagers in the presence of three different types of noise statistics frequently encountered in optical images (Gaussian, Poisson, and Gamma). To compare these different situations within a common theoretical framework, we use the Bhattacharyya distance and the Fisher ratio as measures of contrast. We show that the optimal states depend on a trade-off between the target/background intensity difference and the average intensity in the acquired image, and that this trade-off depends on the noise statistics. On a few examples, we show that the gain in contrast obtained by implementing the states adapted to the noise statistics actually present in the image can be significant.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription