Abstract

Laser microfabrication is now offering interesting solutions to rapidly produce high-resolution photomasks or microstructures. However, most works require expensive commercial lasers and computer numerical control platforms, limiting its use by a large public. In this paper, we report the construction of a simple, custom-made, easily reproducible, automated laser system, based on a DVD optical pickup head. A user-friendly computer interface specifically designed to operate a motorized three-axis platform with micrometric precision controls focus distance and in-plane displacements. Writing performance characterization for both direct ablation and sintering of commercial black toner demonstrated flexibility in tridimensional microfabrication resolution and speed thanks to precise management of laser power and exposure time, with a minimal resolution of 3.1 μm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Abdelgawad, M. W. L. Watson, E. W. K. Young, J. M. Mudrik, M. D. Ungrin, and A. R. Wheeler, “Masters on demand,” Lab Chip 8, 1379–1385 (2008).
    [CrossRef]
  2. Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
    [CrossRef]
  3. A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharm, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sensors Actuators B 153, 125–134 (2011).
    [CrossRef]
  4. W. K. Tomazelli Coltro, D. Pereira de Jesus, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “Toner and paper-based fabrication techniques for microfluidic applications,” Electrophoresis 31, 2487–2498 (2010).
    [CrossRef]
  5. L. Oropeza-Ramos, A. Macias, S. Juarez, A. Falcon, A. Torres, M. Hautefeuille, and H. Gonzalez, “Low cost micro-platform for culturing and stimulation of cardiomyocyte tissue,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (IEEE, 2011), pp. 912–915.
  6. J. S. Miller, M. I. Bethencourt, M. Hahn, T. R. Lee, and J. L. West, “Laser-scanning lithography (LSL) for the soft lithographic patterning of cell-adhesive self-assembled monolayers,” Biotechnology 93, 1060–1068 (2006).
    [CrossRef]
  7. D. Kam and J. Mazumder, “3-D biomimetic micro-channel network by laser direct writing,” J. Laser Appl. 20, 185–194 (2008).
    [CrossRef]
  8. K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11, 811–815 (2010).
    [CrossRef]
  9. S. Selimovic, F. Piraino, H. Bae, M. Rasponi, A. Redaelli, and A. Khademhosseini, “Microfabricated polyester conical microwells for cell culture applications,” Lab Chip 11, 2325–2332 (2011).
    [CrossRef]
  10. C. H. Hsieh, C. J. C. Huang, and Y. Y. Huang, “Patterned PDMS based cell array system: a novel method for fast cell array fabrication,” J. Biomed. Microdev. 12, 897–905 (2010).
    [CrossRef]
  11. X. Nie, J. D. Miller, and Y. D. Yeboah, “The effect of ink types and printing processes on flotation deinking efficiency of wastepaper recycling,” Environ. Eng. Pol. 1, 47–58 (1998).
    [CrossRef]
  12. V. Tsouti, C. Boutopoulos, D. Goustouridis, L. Zergioti, P. Normand, D. Tsoukalas, and S. Chatzandroulis, “A chemical sensor microarray realized by laser printing of polymers,” Sensors Actuators B 150, 148–153 (2010).
    [CrossRef]
  13. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
    [CrossRef]
  14. A. Kasukurti, M. Potcoava, S. Desai, C. Eggleton, and D. W. M. Warr, “Single-cell isolation using a DVD optical pickup,” Opt. Express 19, 10377–10386 (2011).
    [CrossRef]
  15. S. Kostner and M. Vellekoop, “Cell analysis in a microfluidic cytometer applying a DVD pickup head,” Sensors Actuators B 132, 512–517 (2008).
    [CrossRef]
  16. C. H. Liu, S. C. Yeh, and H. L. Huang, “Thickness measurement system for transparent plates using dual digital versatile disc (DVD) pickups,” Appl. Opt. 49, 637–643 (2010).
    [CrossRef]
  17. J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
    [CrossRef]
  18. E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
    [CrossRef]
  19. B. Hnilicka, A. Voda, and H. J. Schröder, “Modelling the characteristics of a photodetector in a DVD player,” Sensors Actuators A 120, 494–506 (2005).
    [CrossRef]
  20. C. L. Chu and C. H. Lin, “Development of an optical accelerometer with a DVD pick-up head,” Meas. Sci. Technol. 16, 2498–2502 (2005).
    [CrossRef]
  21. D. W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives,” J. Biomater. Sci. Polym. Ed. 12, 107–124 (2001).
    [CrossRef]
  22. A. Mata, E. J. Kim, C. A. Boehm, A. J. Fleischman, G. F. Muschler, and S. Roy, “Fabrication of 3-D micro-textured scaffolds for tissue engineering,” Biomaterials 30, 4610–4617 (2009).
    [CrossRef]
  23. A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns,” Lab Chip 8, 170–172 (2008).
    [CrossRef]

2011 (3)

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharm, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sensors Actuators B 153, 125–134 (2011).
[CrossRef]

S. Selimovic, F. Piraino, H. Bae, M. Rasponi, A. Redaelli, and A. Khademhosseini, “Microfabricated polyester conical microwells for cell culture applications,” Lab Chip 11, 2325–2332 (2011).
[CrossRef]

A. Kasukurti, M. Potcoava, S. Desai, C. Eggleton, and D. W. M. Warr, “Single-cell isolation using a DVD optical pickup,” Opt. Express 19, 10377–10386 (2011).
[CrossRef]

2010 (6)

V. Tsouti, C. Boutopoulos, D. Goustouridis, L. Zergioti, P. Normand, D. Tsoukalas, and S. Chatzandroulis, “A chemical sensor microarray realized by laser printing of polymers,” Sensors Actuators B 150, 148–153 (2010).
[CrossRef]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[CrossRef]

C. H. Hsieh, C. J. C. Huang, and Y. Y. Huang, “Patterned PDMS based cell array system: a novel method for fast cell array fabrication,” J. Biomed. Microdev. 12, 897–905 (2010).
[CrossRef]

K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11, 811–815 (2010).
[CrossRef]

W. K. Tomazelli Coltro, D. Pereira de Jesus, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “Toner and paper-based fabrication techniques for microfluidic applications,” Electrophoresis 31, 2487–2498 (2010).
[CrossRef]

C. H. Liu, S. C. Yeh, and H. L. Huang, “Thickness measurement system for transparent plates using dual digital versatile disc (DVD) pickups,” Appl. Opt. 49, 637–643 (2010).
[CrossRef]

2009 (1)

A. Mata, E. J. Kim, C. A. Boehm, A. J. Fleischman, G. F. Muschler, and S. Roy, “Fabrication of 3-D micro-textured scaffolds for tissue engineering,” Biomaterials 30, 4610–4617 (2009).
[CrossRef]

2008 (4)

A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns,” Lab Chip 8, 170–172 (2008).
[CrossRef]

M. Abdelgawad, M. W. L. Watson, E. W. K. Young, J. M. Mudrik, M. D. Ungrin, and A. R. Wheeler, “Masters on demand,” Lab Chip 8, 1379–1385 (2008).
[CrossRef]

D. Kam and J. Mazumder, “3-D biomimetic micro-channel network by laser direct writing,” J. Laser Appl. 20, 185–194 (2008).
[CrossRef]

S. Kostner and M. Vellekoop, “Cell analysis in a microfluidic cytometer applying a DVD pickup head,” Sensors Actuators B 132, 512–517 (2008).
[CrossRef]

2007 (1)

E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
[CrossRef]

2006 (1)

J. S. Miller, M. I. Bethencourt, M. Hahn, T. R. Lee, and J. L. West, “Laser-scanning lithography (LSL) for the soft lithographic patterning of cell-adhesive self-assembled monolayers,” Biotechnology 93, 1060–1068 (2006).
[CrossRef]

2005 (2)

B. Hnilicka, A. Voda, and H. J. Schröder, “Modelling the characteristics of a photodetector in a DVD player,” Sensors Actuators A 120, 494–506 (2005).
[CrossRef]

C. L. Chu and C. H. Lin, “Development of an optical accelerometer with a DVD pick-up head,” Meas. Sci. Technol. 16, 2498–2502 (2005).
[CrossRef]

2001 (1)

D. W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives,” J. Biomater. Sci. Polym. Ed. 12, 107–124 (2001).
[CrossRef]

2000 (1)

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
[CrossRef]

1998 (1)

X. Nie, J. D. Miller, and Y. D. Yeboah, “The effect of ink types and printing processes on flotation deinking efficiency of wastepaper recycling,” Environ. Eng. Pol. 1, 47–58 (1998).
[CrossRef]

1996 (1)

Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Abdelgawad, M.

M. Abdelgawad, M. W. L. Watson, E. W. K. Young, J. M. Mudrik, M. D. Ungrin, and A. R. Wheeler, “Masters on demand,” Lab Chip 8, 1379–1385 (2008).
[CrossRef]

Anderson, J. R.

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
[CrossRef]

Bae, H.

S. Selimovic, F. Piraino, H. Bae, M. Rasponi, A. Redaelli, and A. Khademhosseini, “Microfabricated polyester conical microwells for cell culture applications,” Lab Chip 11, 2325–2332 (2011).
[CrossRef]

Bethencourt, M. I.

J. S. Miller, M. I. Bethencourt, M. Hahn, T. R. Lee, and J. L. West, “Laser-scanning lithography (LSL) for the soft lithographic patterning of cell-adhesive self-assembled monolayers,” Biotechnology 93, 1060–1068 (2006).
[CrossRef]

Boehm, C. A.

A. Mata, E. J. Kim, C. A. Boehm, A. J. Fleischman, G. F. Muschler, and S. Roy, “Fabrication of 3-D micro-textured scaffolds for tissue engineering,” Biomaterials 30, 4610–4617 (2009).
[CrossRef]

Boutopoulos, C.

V. Tsouti, C. Boutopoulos, D. Goustouridis, L. Zergioti, P. Normand, D. Tsoukalas, and S. Chatzandroulis, “A chemical sensor microarray realized by laser printing of polymers,” Sensors Actuators B 150, 148–153 (2010).
[CrossRef]

Breslauer, D. N.

A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns,” Lab Chip 8, 170–172 (2008).
[CrossRef]

Carrilho, E.

W. K. Tomazelli Coltro, D. Pereira de Jesus, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “Toner and paper-based fabrication techniques for microfluidic applications,” Electrophoresis 31, 2487–2498 (2010).
[CrossRef]

Chatzandroulis, S.

V. Tsouti, C. Boutopoulos, D. Goustouridis, L. Zergioti, P. Normand, D. Tsoukalas, and S. Chatzandroulis, “A chemical sensor microarray realized by laser printing of polymers,” Sensors Actuators B 150, 148–153 (2010).
[CrossRef]

Cherniavskaya, O.

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
[CrossRef]

Chiu, D. T.

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
[CrossRef]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[CrossRef]

Chu, C. L.

C. L. Chu and C. H. Lin, “Development of an optical accelerometer with a DVD pick-up head,” Meas. Sci. Technol. 16, 2498–2502 (2005).
[CrossRef]

Desai, S.

Dwivedi, P. K.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharm, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sensors Actuators B 153, 125–134 (2011).
[CrossRef]

Eggleton, C.

Falcon, A.

L. Oropeza-Ramos, A. Macias, S. Juarez, A. Falcon, A. Torres, M. Hautefeuille, and H. Gonzalez, “Low cost micro-platform for culturing and stimulation of cardiomyocyte tissue,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (IEEE, 2011), pp. 912–915.

Fleischman, A. J.

A. Mata, E. J. Kim, C. A. Boehm, A. J. Fleischman, G. F. Muschler, and S. Roy, “Fabrication of 3-D micro-textured scaffolds for tissue engineering,” Biomaterials 30, 4610–4617 (2009).
[CrossRef]

Fracassi da Silva, J. A.

W. K. Tomazelli Coltro, D. Pereira de Jesus, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “Toner and paper-based fabrication techniques for microfluidic applications,” Electrophoresis 31, 2487–2498 (2010).
[CrossRef]

Gonzalez, H.

L. Oropeza-Ramos, A. Macias, S. Juarez, A. Falcon, A. Torres, M. Hautefeuille, and H. Gonzalez, “Low cost micro-platform for culturing and stimulation of cardiomyocyte tissue,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (IEEE, 2011), pp. 912–915.

Goustouridis, D.

V. Tsouti, C. Boutopoulos, D. Goustouridis, L. Zergioti, P. Normand, D. Tsoukalas, and S. Chatzandroulis, “A chemical sensor microarray realized by laser printing of polymers,” Sensors Actuators B 150, 148–153 (2010).
[CrossRef]

Grimes, A.

A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns,” Lab Chip 8, 170–172 (2008).
[CrossRef]

Hahn, M.

J. S. Miller, M. I. Bethencourt, M. Hahn, T. R. Lee, and J. L. West, “Laser-scanning lithography (LSL) for the soft lithographic patterning of cell-adhesive self-assembled monolayers,” Biotechnology 93, 1060–1068 (2006).
[CrossRef]

Hautefeuille, M.

L. Oropeza-Ramos, A. Macias, S. Juarez, A. Falcon, A. Torres, M. Hautefeuille, and H. Gonzalez, “Low cost micro-platform for culturing and stimulation of cardiomyocyte tissue,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (IEEE, 2011), pp. 912–915.

Hnilicka, B.

B. Hnilicka, A. Voda, and H. J. Schröder, “Modelling the characteristics of a photodetector in a DVD player,” Sensors Actuators A 120, 494–506 (2005).
[CrossRef]

Hong, M. H.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[CrossRef]

Hsieh, C. H.

C. H. Hsieh, C. J. C. Huang, and Y. Y. Huang, “Patterned PDMS based cell array system: a novel method for fast cell array fabrication,” J. Biomed. Microdev. 12, 897–905 (2010).
[CrossRef]

Huang, C. J. C.

C. H. Hsieh, C. J. C. Huang, and Y. Y. Huang, “Patterned PDMS based cell array system: a novel method for fast cell array fabrication,” J. Biomed. Microdev. 12, 897–905 (2010).
[CrossRef]

Huang, H. L.

Huang, Y. Y.

C. H. Hsieh, C. J. C. Huang, and Y. Y. Huang, “Patterned PDMS based cell array system: a novel method for fast cell array fabrication,” J. Biomed. Microdev. 12, 897–905 (2010).
[CrossRef]

Hutmacher, D. W.

D. W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives,” J. Biomater. Sci. Polym. Ed. 12, 107–124 (2001).
[CrossRef]

Jackman, R. J.

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
[CrossRef]

Jeon, S.

E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
[CrossRef]

Juarez, S.

L. Oropeza-Ramos, A. Macias, S. Juarez, A. Falcon, A. Torres, M. Hautefeuille, and H. Gonzalez, “Low cost micro-platform for culturing and stimulation of cardiomyocyte tissue,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (IEEE, 2011), pp. 912–915.

Kam, D.

D. Kam and J. Mazumder, “3-D biomimetic micro-channel network by laser direct writing,” J. Laser Appl. 20, 185–194 (2008).
[CrossRef]

Kasukurti, A.

Katepalli, H.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharm, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sensors Actuators B 153, 125–134 (2011).
[CrossRef]

Khademhosseini, A.

S. Selimovic, F. Piraino, H. Bae, M. Rasponi, A. Redaelli, and A. Khademhosseini, “Microfabricated polyester conical microwells for cell culture applications,” Lab Chip 11, 2325–2332 (2011).
[CrossRef]

Khine, M.

A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns,” Lab Chip 8, 170–172 (2008).
[CrossRef]

Kim, E. J.

A. Mata, E. J. Kim, C. A. Boehm, A. J. Fleischman, G. F. Muschler, and S. Roy, “Fabrication of 3-D micro-textured scaffolds for tissue engineering,” Biomaterials 30, 4610–4617 (2009).
[CrossRef]

Kostner, S.

S. Kostner and M. Vellekoop, “Cell analysis in a microfluidic cytometer applying a DVD pickup head,” Sensors Actuators B 132, 512–517 (2008).
[CrossRef]

Lee, L. P.

A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns,” Lab Chip 8, 170–172 (2008).
[CrossRef]

Lee, T. R.

J. S. Miller, M. I. Bethencourt, M. Hahn, T. R. Lee, and J. L. West, “Laser-scanning lithography (LSL) for the soft lithographic patterning of cell-adhesive self-assembled monolayers,” Biotechnology 93, 1060–1068 (2006).
[CrossRef]

Lin, C. H.

C. L. Chu and C. H. Lin, “Development of an optical accelerometer with a DVD pick-up head,” Meas. Sci. Technol. 16, 2498–2502 (2005).
[CrossRef]

Liu, C. H.

Long, M.

A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns,” Lab Chip 8, 170–172 (2008).
[CrossRef]

Lucio do Lago, C.

W. K. Tomazelli Coltro, D. Pereira de Jesus, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “Toner and paper-based fabrication techniques for microfluidic applications,” Electrophoresis 31, 2487–2498 (2010).
[CrossRef]

Macias, A.

L. Oropeza-Ramos, A. Macias, S. Juarez, A. Falcon, A. Torres, M. Hautefeuille, and H. Gonzalez, “Low cost micro-platform for culturing and stimulation of cardiomyocyte tissue,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (IEEE, 2011), pp. 912–915.

Madou, M. J.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharm, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sensors Actuators B 153, 125–134 (2011).
[CrossRef]

Martinez-Duarte, R.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharm, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sensors Actuators B 153, 125–134 (2011).
[CrossRef]

Mata, A.

A. Mata, E. J. Kim, C. A. Boehm, A. J. Fleischman, G. F. Muschler, and S. Roy, “Fabrication of 3-D micro-textured scaffolds for tissue engineering,” Biomaterials 30, 4610–4617 (2009).
[CrossRef]

Matsuda, K.

K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11, 811–815 (2010).
[CrossRef]

Mazumder, J.

D. Kam and J. Mazumder, “3-D biomimetic micro-channel network by laser direct writing,” J. Laser Appl. 20, 185–194 (2008).
[CrossRef]

McDonald, J. C.

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
[CrossRef]

Meitl, M. A.

E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
[CrossRef]

Menard, E.

E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
[CrossRef]

Miller, J. D.

X. Nie, J. D. Miller, and Y. D. Yeboah, “The effect of ink types and printing processes on flotation deinking efficiency of wastepaper recycling,” Environ. Eng. Pol. 1, 47–58 (1998).
[CrossRef]

Miller, J. S.

J. S. Miller, M. I. Bethencourt, M. Hahn, T. R. Lee, and J. L. West, “Laser-scanning lithography (LSL) for the soft lithographic patterning of cell-adhesive self-assembled monolayers,” Biotechnology 93, 1060–1068 (2006).
[CrossRef]

Mudrik, J. M.

M. Abdelgawad, M. W. L. Watson, E. W. K. Young, J. M. Mudrik, M. D. Ungrin, and A. R. Wheeler, “Masters on demand,” Lab Chip 8, 1379–1385 (2008).
[CrossRef]

Muschler, G. F.

A. Mata, E. J. Kim, C. A. Boehm, A. J. Fleischman, G. F. Muschler, and S. Roy, “Fabrication of 3-D micro-textured scaffolds for tissue engineering,” Biomaterials 30, 4610–4617 (2009).
[CrossRef]

Nam, Y. S.

E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
[CrossRef]

Nie, X.

X. Nie, J. D. Miller, and Y. D. Yeboah, “The effect of ink types and printing processes on flotation deinking efficiency of wastepaper recycling,” Environ. Eng. Pol. 1, 47–58 (1998).
[CrossRef]

Normand, P.

V. Tsouti, C. Boutopoulos, D. Goustouridis, L. Zergioti, P. Normand, D. Tsoukalas, and S. Chatzandroulis, “A chemical sensor microarray realized by laser printing of polymers,” Sensors Actuators B 150, 148–153 (2010).
[CrossRef]

Oropeza-Ramos, L.

L. Oropeza-Ramos, A. Macias, S. Juarez, A. Falcon, A. Torres, M. Hautefeuille, and H. Gonzalez, “Low cost micro-platform for culturing and stimulation of cardiomyocyte tissue,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (IEEE, 2011), pp. 912–915.

Park, J. U.

E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
[CrossRef]

Pegan, J.

A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns,” Lab Chip 8, 170–172 (2008).
[CrossRef]

Pereira de Jesus, D.

W. K. Tomazelli Coltro, D. Pereira de Jesus, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “Toner and paper-based fabrication techniques for microfluidic applications,” Electrophoresis 31, 2487–2498 (2010).
[CrossRef]

Piraino, F.

S. Selimovic, F. Piraino, H. Bae, M. Rasponi, A. Redaelli, and A. Khademhosseini, “Microfabricated polyester conical microwells for cell culture applications,” Lab Chip 11, 2325–2332 (2011).
[CrossRef]

Potcoava, M.

Qin, D.

Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Rammohan, A.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharm, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sensors Actuators B 153, 125–134 (2011).
[CrossRef]

Rasponi, M.

S. Selimovic, F. Piraino, H. Bae, M. Rasponi, A. Redaelli, and A. Khademhosseini, “Microfabricated polyester conical microwells for cell culture applications,” Lab Chip 11, 2325–2332 (2011).
[CrossRef]

Redaelli, A.

S. Selimovic, F. Piraino, H. Bae, M. Rasponi, A. Redaelli, and A. Khademhosseini, “Microfabricated polyester conical microwells for cell culture applications,” Lab Chip 11, 2325–2332 (2011).
[CrossRef]

Rogers, J. A.

E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
[CrossRef]

Roy, S.

A. Mata, E. J. Kim, C. A. Boehm, A. J. Fleischman, G. F. Muschler, and S. Roy, “Fabrication of 3-D micro-textured scaffolds for tissue engineering,” Biomaterials 30, 4610–4617 (2009).
[CrossRef]

Schröder, H. J.

B. Hnilicka, A. Voda, and H. J. Schröder, “Modelling the characteristics of a photodetector in a DVD player,” Sensors Actuators A 120, 494–506 (2005).
[CrossRef]

Selimovic, S.

S. Selimovic, F. Piraino, H. Bae, M. Rasponi, A. Redaelli, and A. Khademhosseini, “Microfabricated polyester conical microwells for cell culture applications,” Lab Chip 11, 2325–2332 (2011).
[CrossRef]

Sharm, A.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharm, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sensors Actuators B 153, 125–134 (2011).
[CrossRef]

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[CrossRef]

Shir, J. L.

E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
[CrossRef]

Sun, Y.

E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
[CrossRef]

Takahashi, S.

K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11, 811–815 (2010).
[CrossRef]

Takamasu, K.

K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11, 811–815 (2010).
[CrossRef]

Tien, J.

Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Tomazelli Coltro, W. K.

W. K. Tomazelli Coltro, D. Pereira de Jesus, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “Toner and paper-based fabrication techniques for microfluidic applications,” Electrophoresis 31, 2487–2498 (2010).
[CrossRef]

Torres, A.

L. Oropeza-Ramos, A. Macias, S. Juarez, A. Falcon, A. Torres, M. Hautefeuille, and H. Gonzalez, “Low cost micro-platform for culturing and stimulation of cardiomyocyte tissue,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (IEEE, 2011), pp. 912–915.

Tsoukalas, D.

V. Tsouti, C. Boutopoulos, D. Goustouridis, L. Zergioti, P. Normand, D. Tsoukalas, and S. Chatzandroulis, “A chemical sensor microarray realized by laser printing of polymers,” Sensors Actuators B 150, 148–153 (2010).
[CrossRef]

Tsouti, V.

V. Tsouti, C. Boutopoulos, D. Goustouridis, L. Zergioti, P. Normand, D. Tsoukalas, and S. Chatzandroulis, “A chemical sensor microarray realized by laser printing of polymers,” Sensors Actuators B 150, 148–153 (2010).
[CrossRef]

Ungrin, M. D.

M. Abdelgawad, M. W. L. Watson, E. W. K. Young, J. M. Mudrik, M. D. Ungrin, and A. R. Wheeler, “Masters on demand,” Lab Chip 8, 1379–1385 (2008).
[CrossRef]

Vellekoop, M.

S. Kostner and M. Vellekoop, “Cell analysis in a microfluidic cytometer applying a DVD pickup head,” Sensors Actuators B 132, 512–517 (2008).
[CrossRef]

Voda, A.

B. Hnilicka, A. Voda, and H. J. Schröder, “Modelling the characteristics of a photodetector in a DVD player,” Sensors Actuators A 120, 494–506 (2005).
[CrossRef]

Warr, D. W. M.

Watson, M. W. L.

M. Abdelgawad, M. W. L. Watson, E. W. K. Young, J. M. Mudrik, M. D. Ungrin, and A. R. Wheeler, “Masters on demand,” Lab Chip 8, 1379–1385 (2008).
[CrossRef]

West, J. L.

J. S. Miller, M. I. Bethencourt, M. Hahn, T. R. Lee, and J. L. West, “Laser-scanning lithography (LSL) for the soft lithographic patterning of cell-adhesive self-assembled monolayers,” Biotechnology 93, 1060–1068 (2006).
[CrossRef]

Wheeler, A. R.

M. Abdelgawad, M. W. L. Watson, E. W. K. Young, J. M. Mudrik, M. D. Ungrin, and A. R. Wheeler, “Masters on demand,” Lab Chip 8, 1379–1385 (2008).
[CrossRef]

Whitesides, G. M.

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
[CrossRef]

Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Whitesides, S. H.

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
[CrossRef]

Wu, H.

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
[CrossRef]

Xia, Y.

Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Yeboah, Y. D.

X. Nie, J. D. Miller, and Y. D. Yeboah, “The effect of ink types and printing processes on flotation deinking efficiency of wastepaper recycling,” Environ. Eng. Pol. 1, 47–58 (1998).
[CrossRef]

Yeh, S. C.

Young, E. W. K.

M. Abdelgawad, M. W. L. Watson, E. W. K. Young, J. M. Mudrik, M. D. Ungrin, and A. R. Wheeler, “Masters on demand,” Lab Chip 8, 1379–1385 (2008).
[CrossRef]

Zergioti, L.

V. Tsouti, C. Boutopoulos, D. Goustouridis, L. Zergioti, P. Normand, D. Tsoukalas, and S. Chatzandroulis, “A chemical sensor microarray realized by laser printing of polymers,” Sensors Actuators B 150, 148–153 (2010).
[CrossRef]

Anal. Chem. (1)

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 72, 3158–3164 (2000).
[CrossRef]

Appl. Opt. (1)

Biomaterials (1)

A. Mata, E. J. Kim, C. A. Boehm, A. J. Fleischman, G. F. Muschler, and S. Roy, “Fabrication of 3-D micro-textured scaffolds for tissue engineering,” Biomaterials 30, 4610–4617 (2009).
[CrossRef]

Biotechnology (1)

J. S. Miller, M. I. Bethencourt, M. Hahn, T. R. Lee, and J. L. West, “Laser-scanning lithography (LSL) for the soft lithographic patterning of cell-adhesive self-assembled monolayers,” Biotechnology 93, 1060–1068 (2006).
[CrossRef]

Chem. Rev. (1)

E. Menard, M. A. Meitl, Y. Sun, J. U. Park, J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, “Micro- and nanopatterning techniques for organic electronic and optoelectronic systems,” Chem. Rev. 107, 1117–1160 (2007).
[CrossRef]

Electrophoresis (1)

W. K. Tomazelli Coltro, D. Pereira de Jesus, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “Toner and paper-based fabrication techniques for microfluidic applications,” Electrophoresis 31, 2487–2498 (2010).
[CrossRef]

Environ. Eng. Pol. (1)

X. Nie, J. D. Miller, and Y. D. Yeboah, “The effect of ink types and printing processes on flotation deinking efficiency of wastepaper recycling,” Environ. Eng. Pol. 1, 47–58 (1998).
[CrossRef]

Int. J. Precis. Eng. Manuf. (1)

K. Matsuda, S. Takahashi, and K. Takamasu, “Development of in-process visualization system for laser-assisted three-dimensional microfabrication using photocatalyst nanoparticles,” Int. J. Precis. Eng. Manuf. 11, 811–815 (2010).
[CrossRef]

J. Biomater. Sci. Polym. Ed. (1)

D. W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives,” J. Biomater. Sci. Polym. Ed. 12, 107–124 (2001).
[CrossRef]

J. Biomed. Microdev. (1)

C. H. Hsieh, C. J. C. Huang, and Y. Y. Huang, “Patterned PDMS based cell array system: a novel method for fast cell array fabrication,” J. Biomed. Microdev. 12, 897–905 (2010).
[CrossRef]

J. Laser Appl. (1)

D. Kam and J. Mazumder, “3-D biomimetic micro-channel network by laser direct writing,” J. Laser Appl. 20, 185–194 (2008).
[CrossRef]

Lab Chip (3)

S. Selimovic, F. Piraino, H. Bae, M. Rasponi, A. Redaelli, and A. Khademhosseini, “Microfabricated polyester conical microwells for cell culture applications,” Lab Chip 11, 2325–2332 (2011).
[CrossRef]

M. Abdelgawad, M. W. L. Watson, E. W. K. Young, J. M. Mudrik, M. D. Ungrin, and A. R. Wheeler, “Masters on demand,” Lab Chip 8, 1379–1385 (2008).
[CrossRef]

A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns,” Lab Chip 8, 170–172 (2008).
[CrossRef]

Langmuir (1)

Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996).
[CrossRef]

Laser Photon. Rev. (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[CrossRef]

Meas. Sci. Technol. (1)

C. L. Chu and C. H. Lin, “Development of an optical accelerometer with a DVD pick-up head,” Meas. Sci. Technol. 16, 2498–2502 (2005).
[CrossRef]

Opt. Express (1)

Sensors Actuators A (1)

B. Hnilicka, A. Voda, and H. J. Schröder, “Modelling the characteristics of a photodetector in a DVD player,” Sensors Actuators A 120, 494–506 (2005).
[CrossRef]

Sensors Actuators B (3)

S. Kostner and M. Vellekoop, “Cell analysis in a microfluidic cytometer applying a DVD pickup head,” Sensors Actuators B 132, 512–517 (2008).
[CrossRef]

V. Tsouti, C. Boutopoulos, D. Goustouridis, L. Zergioti, P. Normand, D. Tsoukalas, and S. Chatzandroulis, “A chemical sensor microarray realized by laser printing of polymers,” Sensors Actuators B 150, 148–153 (2010).
[CrossRef]

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharm, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sensors Actuators B 153, 125–134 (2011).
[CrossRef]

Other (1)

L. Oropeza-Ramos, A. Macias, S. Juarez, A. Falcon, A. Torres, M. Hautefeuille, and H. Gonzalez, “Low cost micro-platform for culturing and stimulation of cardiomyocyte tissue,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (IEEE, 2011), pp. 912–915.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Laser 3D microstructure fabrication process.

Fig. 2.
Fig. 2.

Diagram and details of the fabricated benchtop three-axis platform. Inset, low-resolution visualization stage.

Fig. 3.
Fig. 3.

S-curve characterization of deposited layer on acetate transparency with a laser diode current intensity of 40 mA.

Fig. 4.
Fig. 4.

WLI measurements of two dots written in a 14 μm thick printed toner with multiple shots every 2 μm. Laser conditions are (a) I=70mA; t=8μs and (b) I=200mA; t=3s.

Fig. 5.
Fig. 5.

Characterization patterns obtained by laser ablation of a printed toner. (a) Lines with successive dots of variable spacings. (b) Surface microchannel.

Fig. 6.
Fig. 6.

Toner sintered patterns (a) detached from glass substrate and (b) sintered on PDMS (full scale is 0.1 in.).

Fig. 7.
Fig. 7.

Serpentine microchannel pattern written in printed toner (left) and its PDMS replica (right).

Metrics