Abstract

We present a new model to predict diffraction patterns of femtosecond pulses through complex optical systems. The model is based on the extension of an ABCD matrix formalism combined with generalized Huygens–Fresnel transforms (already used in the CW regime) to the femtosecond regime. The model is tested to describe femtosecond digital in-line holography experiments realized in situ through a cylindrical Plexiglas pipe. The model allows us to establish analytical relations that link the holographic reconstruction process to the experimental parameters of the pipe and of the incident beam itself. Simulations and experimental results are in good concordance. Femtosecond digital in-line holography is shown to allow significant coherent noise reduction, and this model will be particularly efficient to describe a wide range of optical geometries. More generally, the model developed can be easily used in any experiment where the knowledge of the precise evolution of femtosecond transverse patterns is required.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital in-line holography in thick optical systems: application to visualization in pipes

Nicolas Verrier, Sébastien Coëtmellec, Marc Brunel, and Denis Lebrun
Appl. Opt. 47(22) 4147-4157 (2008)

Direct measurement of particle size and 3D velocity of a gas–solid pipe flow with digital holographic particle tracking velocimetry

Yingchun Wu, Xuecheng Wu, Longchao Yao, Gérard Gréhan, and Kefa Cen
Appl. Opt. 54(9) 2514-2523 (2015)

Size measurement of bubbles in a cavitation tunnel by digital in-line holography

Denis Lebrun, Daniel Allano, Loïc Méès, Françoise Walle, Frédéric Corbin, Romuald Boucheron, and Didier Fréchou
Appl. Opt. 50(34) H1-H9 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription