Abstract

The temperature dependence of photoluminescence (PL) spectra of Er-Tm codoped calcium boroaluminate (CABAL) glasses with different dopant concentrations was investigated under 15–298 K, by pumping at 795 nm. The intensities of three band emissions located at 1.46, 1.53, and 1.80 μm decreased monotonically when increasing the temperature from at lower concentrations. However, the emissions peaked at 1.80 μm increase with the increasing temperature at higher concentrations. This was attributed to the increasing of cross relaxation (CR) resulting from the high doping concentration of Tm ions. This was evidenced by the much shorter fluorescence lifetime of 56 μs for the F34 emission due to F34H36 transition for the CABAL glass codoped with 2.00 mol.% Tm2O3, in comparison with 185 μs for that of 0.2 mol.% Tm2O3. The energy transfer (ET) and CR processes between Er3+ and Tm3+ ions have been discussed at different doping concentrations and operating temperatures. The nonexponential character of the decays of I413/2 and H34 with the increasing concentration indicated the occurring of a dipole-dipole quenching processes in the framework of a diffusion-limited regime. The average critical distances of CR between Tm3+ ions and ET between Er3+ and Tm3+ ions were approximately 1 nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Xiao, R. Serna, and C. N. Afonso, “Broadband infrared emission from Er−Tm:Al2O3 thin films,” Appl. Phys. Lett. 87, 111103 (2005).
    [CrossRef]
  2. D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101, 113511 (2007).
    [CrossRef]
  3. M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
    [CrossRef]
  4. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–574 (2003).
    [CrossRef]
  5. L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er—Tm-codoped tellurite fibre,” Opt. Express 12, 2429–2434 (2004).
    [CrossRef]
  6. A. S. S. de Camargo, L. A. O. Nunes, E. R. Botero, D. Garcia, and J. A. Eiras, “Spectroscopy and energy transfer characteristics of PLZT:Tm3+ transparent ceramics,” Chem. Phys. Lett. 410, 156–159 (2005).
    [CrossRef]
  7. H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Broadband amplified spontaneous emission from an Er3+-Tm3+-codoped silica fiber,” Opt. Lett. 28, 161–163 (2003).
    [CrossRef]
  8. F. Xu, R. Serna, M. J. de Castro, J. M. Fernandez Navarro, and Z. Xiao, “Broadband infrared emission of erbium—thulium-codoped calcium boroaluminate glasses,” Appl. Phys. B 99, 263–270 (2010).
    [CrossRef]
  9. A. E. Owen, “Properties of glasses in the system CaO-B2O3-Al2O3: Part 1. The DC conductivity and structure of calcium boroaluminate glasses,” Phys. Chem. Glasses 2, 87–98 (1961).
  10. A. E. Owen, “Properties of glasses in the system CaO-Al2O3-B2O3,” Phys. Chem. Glasses 2, 152 (1961).
  11. R. Kudesia, L. D. Pye, R. A. Condrate, and J. S. Hayden, “Optical properties of glasses in the system CaO-Al2O3-B2O3,” Proc. SPIE 2287, 164–173 (1994).
    [CrossRef]
  12. H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009).
    [CrossRef]
  13. R. Reisfeid and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxation of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63, 4001–4012 (1975).
    [CrossRef]
  14. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride—thorium fluoride glass,” Phys. Rev. B 39, 80–90 (1989).
    [CrossRef]
  15. A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990).
    [CrossRef]
  16. D. Hulsenberg and J. Bruntsch, “Elktrisch hoch isolierende Glaser im System CaO-Al2O3-B2O3,” Silikattechnik 3, 378–380 (1987).
  17. J. Wang, H. W. Song, X. G. Kong, and W. Xu, “Temperature dependence of the fluorescence of Eu3+-ion doped in various silicate glasses,” J. Appl. Phys. 91, 9466–9470 (2002).
    [CrossRef]
  18. P. Nachimuthu and R. Jagannathan, “Optical absorption spectral studies of Pr3+, Nd3+, Er3+ and Tm3+ ions in the CaO-B2O3-Al2O3 glass system,” Phys. Chem. Glasses 36, 194–200 (1995).
  19. M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
    [CrossRef]
  20. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784(1967).
    [CrossRef]
  21. M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
    [CrossRef]
  22. Y. Wuzhao, C. Yonghu, and Y. Min, “Quenching mechanism of Er3+ emissions in Er3+- and Er3+/Yb3+-doped SrAl12O19nanophosphors,” J. Rare Earths 29, 202–206 (2011).
    [CrossRef]
  23. Z. Xiao, R. Serna, and C. N. Afonso, “Broadband emission in Er—Tm codoped Al2O3 films: the role of energy transfer from Er to Tm,” J. Appl. Phys. 101, 033112 (2007).
    [CrossRef]

2011 (1)

Y. Wuzhao, C. Yonghu, and Y. Min, “Quenching mechanism of Er3+ emissions in Er3+- and Er3+/Yb3+-doped SrAl12O19nanophosphors,” J. Rare Earths 29, 202–206 (2011).
[CrossRef]

2010 (1)

F. Xu, R. Serna, M. J. de Castro, J. M. Fernandez Navarro, and Z. Xiao, “Broadband infrared emission of erbium—thulium-codoped calcium boroaluminate glasses,” Appl. Phys. B 99, 263–270 (2010).
[CrossRef]

2009 (1)

H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009).
[CrossRef]

2008 (1)

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

2007 (2)

Z. Xiao, R. Serna, and C. N. Afonso, “Broadband emission in Er—Tm codoped Al2O3 films: the role of energy transfer from Er to Tm,” J. Appl. Phys. 101, 033112 (2007).
[CrossRef]

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101, 113511 (2007).
[CrossRef]

2005 (2)

Z. Xiao, R. Serna, and C. N. Afonso, “Broadband infrared emission from Er−Tm:Al2O3 thin films,” Appl. Phys. Lett. 87, 111103 (2005).
[CrossRef]

A. S. S. de Camargo, L. A. O. Nunes, E. R. Botero, D. Garcia, and J. A. Eiras, “Spectroscopy and energy transfer characteristics of PLZT:Tm3+ transparent ceramics,” Chem. Phys. Lett. 410, 156–159 (2005).
[CrossRef]

2004 (1)

2003 (2)

H. Jeong, K. Oh, S. R. Han, and T. F. Morse, “Broadband amplified spontaneous emission from an Er3+-Tm3+-codoped silica fiber,” Opt. Lett. 28, 161–163 (2003).
[CrossRef]

L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef]

2002 (1)

J. Wang, H. W. Song, X. G. Kong, and W. Xu, “Temperature dependence of the fluorescence of Eu3+-ion doped in various silicate glasses,” J. Appl. Phys. 91, 9466–9470 (2002).
[CrossRef]

2001 (1)

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[CrossRef]

1995 (1)

P. Nachimuthu and R. Jagannathan, “Optical absorption spectral studies of Pr3+, Nd3+, Er3+ and Tm3+ ions in the CaO-B2O3-Al2O3 glass system,” Phys. Chem. Glasses 36, 194–200 (1995).

1994 (1)

R. Kudesia, L. D. Pye, R. A. Condrate, and J. S. Hayden, “Optical properties of glasses in the system CaO-Al2O3-B2O3,” Proc. SPIE 2287, 164–173 (1994).
[CrossRef]

1990 (1)

A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990).
[CrossRef]

1989 (1)

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride—thorium fluoride glass,” Phys. Rev. B 39, 80–90 (1989).
[CrossRef]

1987 (1)

D. Hulsenberg and J. Bruntsch, “Elktrisch hoch isolierende Glaser im System CaO-Al2O3-B2O3,” Silikattechnik 3, 378–380 (1987).

1975 (1)

R. Reisfeid and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxation of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63, 4001–4012 (1975).
[CrossRef]

1971 (1)

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[CrossRef]

1967 (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784(1967).
[CrossRef]

1961 (2)

A. E. Owen, “Properties of glasses in the system CaO-B2O3-Al2O3: Part 1. The DC conductivity and structure of calcium boroaluminate glasses,” Phys. Chem. Glasses 2, 87–98 (1961).

A. E. Owen, “Properties of glasses in the system CaO-Al2O3-B2O3,” Phys. Chem. Glasses 2, 152 (1961).

Adam, J. L.

L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef]

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride—thorium fluoride glass,” Phys. Rev. B 39, 80–90 (1989).
[CrossRef]

Afonso, C. N.

Z. Xiao, R. Serna, and C. N. Afonso, “Broadband emission in Er—Tm codoped Al2O3 films: the role of energy transfer from Er to Tm,” J. Appl. Phys. 101, 033112 (2007).
[CrossRef]

Z. Xiao, R. Serna, and C. N. Afonso, “Broadband infrared emission from Er−Tm:Al2O3 thin films,” Appl. Phys. Lett. 87, 111103 (2005).
[CrossRef]

Bao, F.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101, 113511 (2007).
[CrossRef]

Barbosa-García, O.

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

Botero, E. R.

A. S. S. de Camargo, L. A. O. Nunes, E. R. Botero, D. Garcia, and J. A. Eiras, “Spectroscopy and energy transfer characteristics of PLZT:Tm3+ transparent ceramics,” Chem. Phys. Lett. 410, 156–159 (2005).
[CrossRef]

Bruntsch, J.

D. Hulsenberg and J. Bruntsch, “Elktrisch hoch isolierende Glaser im System CaO-Al2O3-B2O3,” Silikattechnik 3, 378–380 (1987).

Carrillo-Romo, F. J.

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

Chateau, C.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[CrossRef]

Chen, D.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101, 113511 (2007).
[CrossRef]

Condrate, R. A.

R. Kudesia, L. D. Pye, R. A. Condrate, and J. S. Hayden, “Optical properties of glasses in the system CaO-Al2O3-B2O3,” Proc. SPIE 2287, 164–173 (1994).
[CrossRef]

de Camargo, A. S. S.

A. S. S. de Camargo, L. A. O. Nunes, E. R. Botero, D. Garcia, and J. A. Eiras, “Spectroscopy and energy transfer characteristics of PLZT:Tm3+ transparent ceramics,” Chem. Phys. Lett. 410, 156–159 (2005).
[CrossRef]

de Castro, M. J.

F. Xu, R. Serna, M. J. de Castro, J. M. Fernandez Navarro, and Z. Xiao, “Broadband infrared emission of erbium—thulium-codoped calcium boroaluminate glasses,” Appl. Phys. B 99, 263–270 (2010).
[CrossRef]

Doualan, L.

L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef]

Eckstein, Y.

R. Reisfeid and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxation of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63, 4001–4012 (1975).
[CrossRef]

Eiras, J. A.

A. S. S. de Camargo, L. A. O. Nunes, E. R. Botero, D. Garcia, and J. A. Eiras, “Spectroscopy and energy transfer characteristics of PLZT:Tm3+ transparent ceramics,” Chem. Phys. Lett. 410, 156–159 (2005).
[CrossRef]

Fernandez Navarro, J. M.

F. Xu, R. Serna, M. J. de Castro, J. M. Fernandez Navarro, and Z. Xiao, “Broadband infrared emission of erbium—thulium-codoped calcium boroaluminate glasses,” Appl. Phys. B 99, 263–270 (2010).
[CrossRef]

Garcia, D.

A. S. S. de Camargo, L. A. O. Nunes, E. R. Botero, D. Garcia, and J. A. Eiras, “Spectroscopy and energy transfer characteristics of PLZT:Tm3+ transparent ceramics,” Chem. Phys. Lett. 410, 156–159 (2005).
[CrossRef]

García-Hernández, M.

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

García-Murillo, A.

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

Genotelle, M.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[CrossRef]

Georgescu, S.

A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990).
[CrossRef]

Girard, S.

L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef]

Goldner, P.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[CrossRef]

Han, S. R.

Haquin, H.

L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef]

Hayden, J. S.

R. Kudesia, L. D. Pye, R. A. Condrate, and J. S. Hayden, “Optical properties of glasses in the system CaO-Al2O3-B2O3,” Proc. SPIE 2287, 164–173 (1994).
[CrossRef]

Huang, L.

Hulsenberg, D.

D. Hulsenberg and J. Bruntsch, “Elktrisch hoch isolierende Glaser im System CaO-Al2O3-B2O3,” Silikattechnik 3, 378–380 (1987).

Jagannathan, R.

P. Nachimuthu and R. Jagannathan, “Optical absorption spectral studies of Pr3+, Nd3+, Er3+ and Tm3+ ions in the CaO-B2O3-Al2O3 glass system,” Phys. Chem. Glasses 36, 194–200 (1995).

Jeong, H.

Jha, A.

Jiang, Z. M.

H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009).
[CrossRef]

Kong, X. G.

J. Wang, H. W. Song, X. G. Kong, and W. Xu, “Temperature dependence of the fluorescence of Eu3+-ion doped in various silicate glasses,” J. Appl. Phys. 91, 9466–9470 (2002).
[CrossRef]

Kudesia, R.

R. Kudesia, L. D. Pye, R. A. Condrate, and J. S. Hayden, “Optical properties of glasses in the system CaO-Al2O3-B2O3,” Proc. SPIE 2287, 164–173 (1994).
[CrossRef]

Liu, X.

Lou, H. N.

H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009).
[CrossRef]

Lu, F.

H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009).
[CrossRef]

Lupei, A.

A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990).
[CrossRef]

Lupei, V.

A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990).
[CrossRef]

Madigou, V.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride—thorium fluoride glass,” Phys. Rev. B 39, 80–90 (1989).
[CrossRef]

Mai, L. L.

H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009).
[CrossRef]

Maldondo, J. L.

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

Meneses-Nava, M. A.

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

Min, Y.

Y. Wuzhao, C. Yonghu, and Y. Min, “Quenching mechanism of Er3+ emissions in Er3+- and Er3+/Yb3+-doped SrAl12O19nanophosphors,” J. Rare Earths 29, 202–206 (2011).
[CrossRef]

Montagne, J.

L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef]

Morse, T. F.

Mortier, M.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[CrossRef]

Murina, T. M.

A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990).
[CrossRef]

Nachimuthu, P.

P. Nachimuthu and R. Jagannathan, “Optical absorption spectral studies of Pr3+, Nd3+, Er3+ and Tm3+ ions in the CaO-B2O3-Al2O3 glass system,” Phys. Chem. Glasses 36, 194–200 (1995).

Nunes, L. A. O.

A. S. S. de Camargo, L. A. O. Nunes, E. R. Botero, D. Garcia, and J. A. Eiras, “Spectroscopy and energy transfer characteristics of PLZT:Tm3+ transparent ceramics,” Chem. Phys. Lett. 410, 156–159 (2005).
[CrossRef]

Oh, K.

Owen, A. E.

A. E. Owen, “Properties of glasses in the system CaO-B2O3-Al2O3: Part 1. The DC conductivity and structure of calcium boroaluminate glasses,” Phys. Chem. Glasses 2, 87–98 (1961).

A. E. Owen, “Properties of glasses in the system CaO-Al2O3-B2O3,” Phys. Chem. Glasses 2, 152 (1961).

Petrin, R. R.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride—thorium fluoride glass,” Phys. Rev. B 39, 80–90 (1989).
[CrossRef]

Pichardo, J. L.

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

Prokhorov, A. M.

A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990).
[CrossRef]

Pye, L. D.

R. Kudesia, L. D. Pye, R. A. Condrate, and J. S. Hayden, “Optical properties of glasses in the system CaO-Al2O3-B2O3,” Proc. SPIE 2287, 164–173 (1994).
[CrossRef]

Ramos-Ortíz, G.

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

Reisfeid, R.

R. Reisfeid and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxation of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63, 4001–4012 (1975).
[CrossRef]

Serna, R.

F. Xu, R. Serna, M. J. de Castro, J. M. Fernandez Navarro, and Z. Xiao, “Broadband infrared emission of erbium—thulium-codoped calcium boroaluminate glasses,” Appl. Phys. B 99, 263–270 (2010).
[CrossRef]

Z. Xiao, R. Serna, and C. N. Afonso, “Broadband emission in Er—Tm codoped Al2O3 films: the role of energy transfer from Er to Tm,” J. Appl. Phys. 101, 033112 (2007).
[CrossRef]

Z. Xiao, R. Serna, and C. N. Afonso, “Broadband infrared emission from Er−Tm:Al2O3 thin films,” Appl. Phys. Lett. 87, 111103 (2005).
[CrossRef]

Shen, S.

Sibley, W. A.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride—thorium fluoride glass,” Phys. Rev. B 39, 80–90 (1989).
[CrossRef]

Song, H. W.

J. Wang, H. W. Song, X. G. Kong, and W. Xu, “Temperature dependence of the fluorescence of Eu3+-ion doped in various silicate glasses,” J. Appl. Phys. 91, 9466–9470 (2002).
[CrossRef]

Suscavage, M. J.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride—thorium fluoride glass,” Phys. Rev. B 39, 80–90 (1989).
[CrossRef]

Tanimoto, O.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784(1967).
[CrossRef]

Tao, Z. S.

H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009).
[CrossRef]

Torres-Cisneros, M.

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

Ursu, I.

A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990).
[CrossRef]

Wang, J.

J. Wang, H. W. Song, X. G. Kong, and W. Xu, “Temperature dependence of the fluorescence of Eu3+-ion doped in various silicate glasses,” J. Appl. Phys. 91, 9466–9470 (2002).
[CrossRef]

Wang, X.

H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009).
[CrossRef]

Wang, Y.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101, 113511 (2007).
[CrossRef]

Weber, M. J.

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[CrossRef]

Wuzhao, Y.

Y. Wuzhao, C. Yonghu, and Y. Min, “Quenching mechanism of Er3+ emissions in Er3+- and Er3+/Yb3+-doped SrAl12O19nanophosphors,” J. Rare Earths 29, 202–206 (2011).
[CrossRef]

Xiao, Z.

F. Xu, R. Serna, M. J. de Castro, J. M. Fernandez Navarro, and Z. Xiao, “Broadband infrared emission of erbium—thulium-codoped calcium boroaluminate glasses,” Appl. Phys. B 99, 263–270 (2010).
[CrossRef]

Z. Xiao, R. Serna, and C. N. Afonso, “Broadband emission in Er—Tm codoped Al2O3 films: the role of energy transfer from Er to Tm,” J. Appl. Phys. 101, 033112 (2007).
[CrossRef]

Z. Xiao, R. Serna, and C. N. Afonso, “Broadband infrared emission from Er−Tm:Al2O3 thin films,” Appl. Phys. Lett. 87, 111103 (2005).
[CrossRef]

Xu, F.

F. Xu, R. Serna, M. J. de Castro, J. M. Fernandez Navarro, and Z. Xiao, “Broadband infrared emission of erbium—thulium-codoped calcium boroaluminate glasses,” Appl. Phys. B 99, 263–270 (2010).
[CrossRef]

H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009).
[CrossRef]

Xu, W.

J. Wang, H. W. Song, X. G. Kong, and W. Xu, “Temperature dependence of the fluorescence of Eu3+-ion doped in various silicate glasses,” J. Appl. Phys. 91, 9466–9470 (2002).
[CrossRef]

Yeh, D. C.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride—thorium fluoride glass,” Phys. Rev. B 39, 80–90 (1989).
[CrossRef]

Yokota, M.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784(1967).
[CrossRef]

Yonghu, C.

Y. Wuzhao, C. Yonghu, and Y. Min, “Quenching mechanism of Er3+ emissions in Er3+- and Er3+/Yb3+-doped SrAl12O19nanophosphors,” J. Rare Earths 29, 202–206 (2011).
[CrossRef]

Yu, Y.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101, 113511 (2007).
[CrossRef]

Zhekov, V. I.

A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990).
[CrossRef]

Appl. Phys. B (1)

F. Xu, R. Serna, M. J. de Castro, J. M. Fernandez Navarro, and Z. Xiao, “Broadband infrared emission of erbium—thulium-codoped calcium boroaluminate glasses,” Appl. Phys. B 99, 263–270 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Xiao, R. Serna, and C. N. Afonso, “Broadband infrared emission from Er−Tm:Al2O3 thin films,” Appl. Phys. Lett. 87, 111103 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

H. N. Lou, X. Wang, Z. S. Tao, F. Lu, Z. M. Jiang, L. L. Mai, and F. Xu, “Temperature-dependent photoluminescence spectra of Er—Tm-codoped Al2O3 thin film,” Appl. Surf. Sci. 255, 8217–8220 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

A. S. S. de Camargo, L. A. O. Nunes, E. R. Botero, D. Garcia, and J. A. Eiras, “Spectroscopy and energy transfer characteristics of PLZT:Tm3+ transparent ceramics,” Chem. Phys. Lett. 410, 156–159 (2005).
[CrossRef]

J. Alloys Compd. (1)

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[CrossRef]

J. Appl. Phys. (3)

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101, 113511 (2007).
[CrossRef]

J. Wang, H. W. Song, X. G. Kong, and W. Xu, “Temperature dependence of the fluorescence of Eu3+-ion doped in various silicate glasses,” J. Appl. Phys. 91, 9466–9470 (2002).
[CrossRef]

Z. Xiao, R. Serna, and C. N. Afonso, “Broadband emission in Er—Tm codoped Al2O3 films: the role of energy transfer from Er to Tm,” J. Appl. Phys. 101, 033112 (2007).
[CrossRef]

J. Chem. Phys. (1)

R. Reisfeid and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxation of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63, 4001–4012 (1975).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784(1967).
[CrossRef]

J. Rare Earths (1)

Y. Wuzhao, C. Yonghu, and Y. Min, “Quenching mechanism of Er3+ emissions in Er3+- and Er3+/Yb3+-doped SrAl12O19nanophosphors,” J. Rare Earths 29, 202–206 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (2)

L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–574 (2003).
[CrossRef]

M. A. Meneses-Nava, O. Barbosa-García, J. L. Maldondo, G. Ramos-Ortíz, J. L. Pichardo, M. Torres-Cisneros, M. García-Hernández, A. García-Murillo, and F. J. Carrillo-Romo, “Yb3+quenching effects in co-doped polycrystalline BaTiO3:Er3+, Yb3+,” Opt. Mater. 31, 252–260 (2008).
[CrossRef]

Phys. Chem. Glasses (3)

A. E. Owen, “Properties of glasses in the system CaO-B2O3-Al2O3: Part 1. The DC conductivity and structure of calcium boroaluminate glasses,” Phys. Chem. Glasses 2, 87–98 (1961).

A. E. Owen, “Properties of glasses in the system CaO-Al2O3-B2O3,” Phys. Chem. Glasses 2, 152 (1961).

P. Nachimuthu and R. Jagannathan, “Optical absorption spectral studies of Pr3+, Nd3+, Er3+ and Tm3+ ions in the CaO-B2O3-Al2O3 glass system,” Phys. Chem. Glasses 36, 194–200 (1995).

Phys. Rev. B (3)

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[CrossRef]

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride—thorium fluoride glass,” Phys. Rev. B 39, 80–90 (1989).
[CrossRef]

A. Lupei, V. Lupei, S. Georgescu, I. Ursu, V. I. Zhekov, T. M. Murina, and A. M. Prokhorov, “Many-body energy-transfer processes between Er3+ ions in yttrium aluminum garnet,” Phys. Rev. B 41, 10923–10932 (1990).
[CrossRef]

Proc. SPIE (1)

R. Kudesia, L. D. Pye, R. A. Condrate, and J. S. Hayden, “Optical properties of glasses in the system CaO-Al2O3-B2O3,” Proc. SPIE 2287, 164–173 (1994).
[CrossRef]

Silikattechnik (1)

D. Hulsenberg and J. Bruntsch, “Elktrisch hoch isolierende Glaser im System CaO-Al2O3-B2O3,” Silikattechnik 3, 378–380 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Near-infrared PL spectra from 1300 to 2000 nm of the Er-Tm codoped CABAL glasses with [Tm]/[Er]=10 at different concentrations of RE ions, under an excitation of 795 nm at RT with a pump power of 200 mW.

Fig. 2.
Fig. 2.

Near-infrared PL spectra of Er-only (0.06 mol % Er2O3), Tm-only (0.60 mol % Tm2O3), and Er-Tm codoped (0.06mol%Er2O3+0.60mol%Tm2O3) from 1300 to 2000 nm under an excitation of 795 nm at RT with a pump power of 200 mW.

Fig. 3.
Fig. 3.

Temperature dependence of the near-infrared PL spectra of the Er-Tm codoped CABAL glasses with different concentrations of Er2O3 and Tm2O3.

Fig. 4.
Fig. 4.

Temperature dependence characteristic peak intensity of Er-Tm codoped CABAL glasses with different concentrations of Er2O3 and Tm2O3.

Fig. 5.
Fig. 5.

Temperature dependence of the lifetimes of H34, I413/2 and F34 for different Tm2O3 concentrations.

Fig. 6.
Fig. 6.

Experimental emission decay curve of H34 (1460 nm) level for the sample doped with 2.00 mol % of Tm2O3 at 15 K and the calculated fit with Eq. (2) (solid line).

Fig. 7.
Fig. 7.

Schematic of the luminescence and energy transfer processes in the Er-Tm codoped CABAL glasses under the excitation of the 795 nm light. The solid lines represent radiative transitions and the dashed lines are non-radiative ones.

Tables (2)

Tables Icon

Table 1. Glass Compositions and RE Concentrations of CABAL Samples

Tables Icon

Table 2. Obtained Values for the Interaction Parameter, Critical Radius R0, and Diffusion Coefficient for the Samples Doped with 0.60 and 2.00 mol.% of Tm2O3 at 15 and 298 K

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1τ=WR+WNR+WET,
I(t)=I(0)×exp[tτR43π3/2NC3/2t1/2(1+10.87x+15.5x21+8.743x)3/2],
ET1:Er3+:I413/2,Tm3+:H36Er3+:I415/2,Tm3+:F34,
ET2:Er3+:I413/2,Tm3+:F34Er3+:I415/2,Tm3+:H34,
CR:Tm3+:H34,H36Tm3+:F34,F34.

Metrics