Abstract

We propose a periodic multilayer structure of dielectric and metal interlayers to achieve a near-perfect broadband absorber of mid-infrared radiation. We examine the influence of four factors on its performance: (1) the interlayer metal conductance, (2) the number of dielectric layers, (3) a nanopatterned antireflective layer, and (4) a reflective metallic bottom layer for backreflection. Absorption characteristics greater than 99% of the 300 K and 500 K blackbody spectra are found for the optimized structures. Incident angle and polarization dependence of the absorption spectra are examined. We also investigate the possibility of fabricating a nanopatterned antireflective layer to maximize absorption.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
    [CrossRef]
  2. L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321, 1457–1461 (2008).
    [CrossRef]
  3. T. M. Tritt, H. Bottner, and L. Chen, “Direct solar thermal energy conversion,” MRS Bull. 33, 366–368 (2008).
    [CrossRef]
  4. T. M. Tritt and M. A. Subramanian, “Thermoelectric materials, phenomena, and applications: a bird’s eye view,” MRS Bull. 31, 188–194 (2006).
    [CrossRef]
  5. G. S. Nolas, J. Poon, and M. Kanatzidis, “Recent developments in bulk thermoelectric materials,” MRS Bull. 31, 199–205 (2006).
    [CrossRef]
  6. I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, “Fabrication of an all-oxide thermoelectric power generator,” Appl. Phys. Lett. 78, 3627–3629 (2001).
    [CrossRef]
  7. E. S. Reddy, J. G. Noudem, S. Herbert, and C. Goupil, “Fabrication and properties of four-leg oxide thermoelectric modules,” J. Phys. D 38, 3751–3755 (2005).
    [CrossRef]
  8. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
    [CrossRef]
  9. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405(2008).
    [CrossRef]
  10. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMCC4.
  11. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
    [CrossRef]
  12. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
    [CrossRef]
  13. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
    [CrossRef]
  14. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef]
  15. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
    [CrossRef]
  16. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [CrossRef]
  17. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [CrossRef]
  18. J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
    [CrossRef]
  19. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  20. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
    [CrossRef]
  21. A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988).
    [CrossRef]
  22. J. J. Monzón, T. Yonte, L. L. Sánchez-Soto, and Á. Felipe, “Optimized broadband wide-angle absorber structures,” Appl. Opt. 47, 6366–6370 (2008).
    [CrossRef]
  23. J. J. Monzón and L. L. Sánchez-Soto, “Optical performance of absorber structures for thermal detectors,” Appl. Opt. 33, 5137–5141 (1994).
    [CrossRef]
  24. P. Eriksson, J. Y. Andersson, and G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
    [CrossRef]
  25. H. A. MacLeod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
  26. E. D. Pailik, ed., Handbook of Optical Constants of Solids, Vol. 3 (Academic, 1998).
  27. J. M. Ziman, Electrons and Phonons (Oxford University, 2001).
  28. V. T. Bly and J. T. Cox, “Infrared absorber for ferroelectric detectors,” Appl. Opt. 33, 26–30 (1994).
    [CrossRef]
  29. D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express 14, 8866–8884 (2006).
    [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  31. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  32. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  33. J. Křepelka, “Maximally flat antireflection coatings,” Jemna Mech. Opt. 3–5, 53–56 (1992).
  34. P. Baumeister, “Antireflection coatings with Chebyshev or Butterworth response: design,” Appl. Opt. 25, 4568–4570(1986).
    [CrossRef]
  35. Admittance values are calculated using y=Zod/ρ as mentioned above in the text, and assuming a value of 1.5×10−6  Ω-m for the resistivity of Ni For Cr. For the calculations, only the thickness and n and k values are used. We note that our NiCr films are actually less thick than those of Bly and Cox [28]. However, modifying the fit parameters only slightly modifies the optimal thickness required to obtain an optimal absorbance. In practice, experimental values of thickness may need to be varied to obtain the desired properties.
  36. I. M. Thomas, “Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44,” Appl. Opt. 31, 6145–6149 (1992).
    [CrossRef]
  37. A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
    [CrossRef]
  38. M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006).
    [CrossRef]
  39. J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
    [CrossRef]
  40. W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3902 (1973).
    [CrossRef]
  41. M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
    [CrossRef]
  42. P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006).
    [CrossRef]

2010

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

2009

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef]

J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
[CrossRef]

2008

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321, 1457–1461 (2008).
[CrossRef]

T. M. Tritt, H. Bottner, and L. Chen, “Direct solar thermal energy conversion,” MRS Bull. 33, 366–368 (2008).
[CrossRef]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405(2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

J. J. Monzón, T. Yonte, L. L. Sánchez-Soto, and Á. Felipe, “Optimized broadband wide-angle absorber structures,” Appl. Opt. 47, 6366–6370 (2008).
[CrossRef]

2007

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
[CrossRef]

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

2006

T. M. Tritt and M. A. Subramanian, “Thermoelectric materials, phenomena, and applications: a bird’s eye view,” MRS Bull. 31, 188–194 (2006).
[CrossRef]

G. S. Nolas, J. Poon, and M. Kanatzidis, “Recent developments in bulk thermoelectric materials,” MRS Bull. 31, 199–205 (2006).
[CrossRef]

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006).
[CrossRef]

A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[CrossRef]

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006).
[CrossRef]

D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express 14, 8866–8884 (2006).
[CrossRef]

2005

J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
[CrossRef]

E. S. Reddy, J. G. Noudem, S. Herbert, and C. Goupil, “Fabrication and properties of four-leg oxide thermoelectric modules,” J. Phys. D 38, 3751–3755 (2005).
[CrossRef]

2001

I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, “Fabrication of an all-oxide thermoelectric power generator,” Appl. Phys. Lett. 78, 3627–3629 (2001).
[CrossRef]

1998

1994

1992

1988

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988).
[CrossRef]

1986

1973

W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3902 (1973).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Andersson, J. Y.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
[CrossRef]

Averitt, R.

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Baumeister, P.

Bell, L. E.

L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321, 1457–1461 (2008).
[CrossRef]

Bessaïs, B.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
[CrossRef]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Blossey, D. F.

W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3902 (1973).
[CrossRef]

Bly, V. T.

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Bottner, H.

T. M. Tritt, H. Bottner, and L. Chen, “Direct solar thermal energy conversion,” MRS Bull. 33, 366–368 (2008).
[CrossRef]

Bouaïcha, M.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
[CrossRef]

Braun, M. M.

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006).
[CrossRef]

Chan, C. T.

Chen, G.

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

Chen, H.

Chen, L.

T. M. Tritt, H. Bottner, and L. Chen, “Direct solar thermal energy conversion,” MRS Bull. 33, 366–368 (2008).
[CrossRef]

Cox, J. T.

de Abajo, F. J. García

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Djurisic, A. B.

Dresselhaus, M.

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

Elazar, J. M.

Eriksson, P.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
[CrossRef]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Fan, S.

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMCC4.

Fan, Z.

J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
[CrossRef]

Felipe, Á.

Fischer, B. M.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006).
[CrossRef]

Fleurial, J. P.

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

Funahashi, R.

I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, “Fabrication of an all-oxide thermoelectric power generator,” Appl. Phys. Lett. 78, 3627–3629 (2001).
[CrossRef]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef]

Gogna, P.

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

Goupil, C.

E. S. Reddy, J. G. Noudem, S. Herbert, and C. Goupil, “Fabrication and properties of four-leg oxide thermoelectric modules,” J. Phys. D 38, 3751–3755 (2005).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405(2008).
[CrossRef]

Haglund, R. F.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006).
[CrossRef]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef]

Helm, H.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006).
[CrossRef]

Herbert, S.

E. S. Reddy, J. G. Noudem, S. Herbert, and C. Goupil, “Fabrication and properties of four-leg oxide thermoelectric modules,” J. Phys. D 38, 3751–3755 (2005).
[CrossRef]

Herman, W. N.

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef]

Jepsen, P. U.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006).
[CrossRef]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Kanatzidis, M.

G. S. Nolas, J. Poon, and M. Kanatzidis, “Recent developments in bulk thermoelectric materials,” MRS Bull. 31, 199–205 (2006).
[CrossRef]

Khardani, M.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
[CrossRef]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef]

Kordas, K.

A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405(2008).
[CrossRef]

Krepelka, J.

J. Křepelka, “Maximally flat antireflection coatings,” Jemna Mech. Opt. 3–5, 53–56 (1992).

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef]

Lee, C. H.

Lee, H.

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

Leppavuori, S.

A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[CrossRef]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Lopez, R.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006).
[CrossRef]

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef]

MacLeod, H. A.

H. A. MacLeod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).

Majewski, M. L.

Matsubara, I.

I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, “Fabrication of an all-oxide thermoelectric power generator,” Appl. Phys. Lett. 78, 3627–3629 (2001).
[CrossRef]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Monzón, J. J.

Ng, J.

Nolas, G. S.

G. S. Nolas, J. Poon, and M. Kanatzidis, “Recent developments in bulk thermoelectric materials,” MRS Bull. 31, 199–205 (2006).
[CrossRef]

Noudem, J. G.

E. S. Reddy, J. G. Noudem, S. Herbert, and C. Goupil, “Fabrication and properties of four-leg oxide thermoelectric modules,” J. Phys. D 38, 3751–3755 (2005).
[CrossRef]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Pap, A. E.

A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[CrossRef]

Park, D. H.

Parsons, A. D.

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988).
[CrossRef]

Pedder, D. J.

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988).
[CrossRef]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Pilon, L.

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006).
[CrossRef]

A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[CrossRef]

Poon, J.

G. S. Nolas, J. Poon, and M. Kanatzidis, “Recent developments in bulk thermoelectric materials,” MRS Bull. 31, 199–205 (2006).
[CrossRef]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef]

Rakic, A. D.

Raman, A.

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMCC4.

Reddy, E. S.

E. S. Reddy, J. G. Noudem, S. Herbert, and C. Goupil, “Fabrication and properties of four-leg oxide thermoelectric modules,” J. Phys. D 38, 3751–3755 (2005).
[CrossRef]

Ren, Z. F.

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Sánchez-Soto, L. L.

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405(2008).
[CrossRef]

Shao, J.

J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
[CrossRef]

Shimizu, T.

I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, “Fabrication of an all-oxide thermoelectric power generator,” Appl. Phys. Lett. 78, 3627–3629 (2001).
[CrossRef]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Sodeoka, S.

I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, “Fabrication of an all-oxide thermoelectric power generator,” Appl. Phys. Lett. 78, 3627–3629 (2001).
[CrossRef]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Stemme, G.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
[CrossRef]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Subramanian, M. A.

T. M. Tritt and M. A. Subramanian, “Thermoelectric materials, phenomena, and applications: a bird’s eye view,” MRS Bull. 31, 188–194 (2006).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Suh, J. Y.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006).
[CrossRef]

Szatmari, S.

A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[CrossRef]

Takeuchi, T.

I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, “Fabrication of an all-oxide thermoelectric power generator,” Appl. Phys. Lett. 78, 3627–3629 (2001).
[CrossRef]

Tang, M. Y.

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Thoman, A.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006).
[CrossRef]

Thomas, I. M.

Tinga, W. R.

W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3902 (1973).
[CrossRef]

Tritt, T. M.

T. M. Tritt, H. Bottner, and L. Chen, “Direct solar thermal energy conversion,” MRS Bull. 33, 366–368 (2008).
[CrossRef]

T. M. Tritt and M. A. Subramanian, “Thermoelectric materials, phenomena, and applications: a bird’s eye view,” MRS Bull. 31, 188–194 (2006).
[CrossRef]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Ueno, K.

I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, “Fabrication of an all-oxide thermoelectric power generator,” Appl. Phys. Lett. 78, 3627–3629 (2001).
[CrossRef]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Uusimaki, A.

A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[CrossRef]

Vahakangas, J.

A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[CrossRef]

Voss, W. A. G.

W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3902 (1973).
[CrossRef]

Wang, D. Z.

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Yang, R. G.

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Yonte, T.

Yu, Z.

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMCC4.

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef]

Zhang, X.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Adv. Mater.

M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric material,” Adv. Mater. 19, 1043–1053 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, “Fabrication of an all-oxide thermoelectric power generator,” Appl. Phys. Lett. 78, 3627–3629 (2001).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

J. Appl. Phys.

W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3902 (1973).
[CrossRef]

J. Phys. D

E. S. Reddy, J. G. Noudem, S. Herbert, and C. Goupil, “Fabrication and properties of four-leg oxide thermoelectric modules,” J. Phys. D 38, 3751–3755 (2005).
[CrossRef]

J. Vac. Sci. Technol. A

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988).
[CrossRef]

Jemna Mech. Opt.

J. Křepelka, “Maximally flat antireflection coatings,” Jemna Mech. Opt. 3–5, 53–56 (1992).

MRS Bull.

T. M. Tritt, H. Bottner, and L. Chen, “Direct solar thermal energy conversion,” MRS Bull. 33, 366–368 (2008).
[CrossRef]

T. M. Tritt and M. A. Subramanian, “Thermoelectric materials, phenomena, and applications: a bird’s eye view,” MRS Bull. 31, 188–194 (2006).
[CrossRef]

G. S. Nolas, J. Poon, and M. Kanatzidis, “Recent developments in bulk thermoelectric materials,” MRS Bull. 31, 199–205 (2006).
[CrossRef]

Nat. Photon.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon. 2, 299–301 (2008).
[CrossRef]

Opt. Commun.

J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

A. E. Pap, K. Kordas, J. Vahakangas, A. Uusimaki, S. Leppavuori, L. Pilon, and S. Szatmari, “Optical properties of porous silicon. Part III: comparison of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[CrossRef]

Phys. Rev. B

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405(2008).
[CrossRef]

Phys. Rev. Lett.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Phys. Scr. T

P. Eriksson, J. Y. Andersson, and G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
[CrossRef]

Phys. Status Solidi C

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. USA

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef]

Science

L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321, 1457–1461 (2008).
[CrossRef]

Thin Solid Films

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496, 505–514 (2006).
[CrossRef]

Other

H. A. MacLeod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).

E. D. Pailik, ed., Handbook of Optical Constants of Solids, Vol. 3 (Academic, 1998).

J. M. Ziman, Electrons and Phonons (Oxford University, 2001).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Admittance values are calculated using y=Zod/ρ as mentioned above in the text, and assuming a value of 1.5×10−6  Ω-m for the resistivity of Ni For Cr. For the calculations, only the thickness and n and k values are used. We note that our NiCr films are actually less thick than those of Bly and Cox [28]. However, modifying the fit parameters only slightly modifies the optimal thickness required to obtain an optimal absorbance. In practice, experimental values of thickness may need to be varied to obtain the desired properties.

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMCC4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Calculated absorption versus frequency for a BaF2/NiCr multilayer device made up of 50 layers of BaF2 whose thicknesses are varied to optimize absorption of a blackbody radiation heat source at (solid red curve) 500 K and (solid black curve) 300 K. The dashed curves show the intensity of the blackbody spectra at each temperature. For the red curve, the BaF2 layer thicknesses are 1.34 μm with an AR layer 1.56 μm thick. For the black curve, the BaF2 layer thicknesses are 1.8 μm with an AR layer 2.1 μm thick. The NiCr layer thickness is 18 Å for both cases.

Fig. 2.
Fig. 2.

Calculated absorption versus frequency for a multilayer structure with 21 BaF2 layers (green, bottom curve) (d=1.34μm, NiCr layer thickness 18 Å) with the addition of an AR layer whose index of refraction is 1.2 and thickness 1.56 μm (black), a Ag layer 5 nm in thickness between the substrate and first BaF2 layer (blue), and both AR and Ag layers of thicknesses as in the above cases (red, top curve).

Fig. 3.
Fig. 3.

Calculated absorption versus frequency for a device in which the number of BaF2 layers is N=5, 11, and 21 layers. The BaF2 layers are 1.34 μm, nAR=1.2, dAR=1.56μm, dAg=5nm. The NiCr thickness (admittance) values are 30 Å (0.75), 25 Å (0.63), and 18 Å (0.45), respectively.

Fig. 4.
Fig. 4.

Calculated incident angular dependence of the absorption for a 21 multilayer structure (dBaF2=1.34μm) with both a 1.56 μm AR layer and a 10 nm Ag bottom layer for s and p polarizations at (a) 20 THz, (b) the peak frequency 40 THz, and (c) 60 THz.

Fig. 5.
Fig. 5.

The filled circles show simulated incident angular dependence of the absorption spectrum using COMSOL software for a single layer 1.56 μm thick AR film composed of BaF2, but containing a square pattern of cylindrical holes 100 nm in diameter, normal to the surface, and separated by a pitch yielding 50% holes/50% BaF2, shown for incident angles of 0°, 30°, and 45°. The solid lines show calculated angular incidence dependence of the absorption spectrum using the Airy formula based on multilayer structures for an AR film with a permittivity given by the volume fraction-weighted average of BaF2 and holes 1.56 μm thick for the same three incident angles.

Metrics