Abstract

Generation of minimally diffracting beam arrays in the midfield region using periodic metal annular apertures is investigated. The relations between the patterns of the diffraction fields and the structural parameters of the periodic metal annular aperture are numerically analyzed. Material dependent transmission characteristics are also studied with finite difference time-domain simulation. The results reveal that the beam concentration efficiency and axial intensity uniformity have a trade-off restriction due to strong inter-aperture interference and surface plasmon mediates the transmission efficiency of the periodic annular apertures. The design criteria of the metal annular aperture to achieve the strong and uniform beam arrays are addressed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  4. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Tunable enhanced light transmission through a single subwavelength aperture,” Adv. Mater. 11, 860–862 (1999).
    [CrossRef]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef]
  6. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugation,” Appl. Phys. Lett. 83, 4500–4502 (2003).
    [CrossRef]
  7. P. T. Worthinga and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79, 3035 (2001).
    [CrossRef]
  8. H. Kim, J. Park, and B. Lee, “Finite-size nondiffracting beam from a subwavelength metallic hole with concentric dielectric gratings,” Appl. Opt. 48, G68–G72 (2009).
    [CrossRef]
  9. S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271–2276 (2007).
    [CrossRef]
  10. H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188–2191 (2008).
    [CrossRef]
  11. D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE 4, e6320 (2009).
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef]
  13. S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
    [CrossRef]
  14. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
    [CrossRef]
  15. M. J. Weber, Handbook of Optical Materials (CRC, 2003).
  16. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
    [CrossRef]
  17. G. T. D. Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento 9, 426–438 (1952).
  18. J. L. Harris, “Diffraction and resolving power,” J. Opt. Soc. Am. 54, 931–933 (1964).
    [CrossRef]
  19. A. Ranfagni, D. Mugnai, and R. Ruggeri, “Beyond the diffraction limit: super-resolving pupils,” J. Appl. Phys. 95, 2217–2222 (2004).
    [CrossRef]
  20. H. I. Smith, “A proposal for maskless, zone-plate-array nanolithography,” J. Vac. Sci. Technol. B 14, 4318–4322 (1996).
    [CrossRef]
  21. P. Saari, K. Reivelt, and H. Valtna, “Ultralocalized superluminal light pulses,” Laser Physics 17, 297–301 (2007).
    [CrossRef]

2010 (2)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
[CrossRef]

2009 (2)

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE 4, e6320 (2009).

H. Kim, J. Park, and B. Lee, “Finite-size nondiffracting beam from a subwavelength metallic hole with concentric dielectric gratings,” Appl. Opt. 48, G68–G72 (2009).
[CrossRef]

2008 (1)

H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188–2191 (2008).
[CrossRef]

2007 (2)

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271–2276 (2007).
[CrossRef]

P. Saari, K. Reivelt, and H. Valtna, “Ultralocalized superluminal light pulses,” Laser Physics 17, 297–301 (2007).
[CrossRef]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

2004 (2)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

A. Ranfagni, D. Mugnai, and R. Ruggeri, “Beyond the diffraction limit: super-resolving pupils,” J. Appl. Phys. 95, 2217–2222 (2004).
[CrossRef]

2003 (2)

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugation,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

2002 (2)

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

2001 (1)

P. T. Worthinga and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79, 3035 (2001).
[CrossRef]

1999 (1)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Tunable enhanced light transmission through a single subwavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1996 (1)

H. I. Smith, “A proposal for maskless, zone-plate-array nanolithography,” J. Vac. Sci. Technol. B 14, 4318–4322 (1996).
[CrossRef]

1964 (1)

1952 (1)

G. T. D. Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento 9, 426–438 (1952).

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

P. T. Worthinga and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79, 3035 (2001).
[CrossRef]

Bishara, W.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
[CrossRef]

Breslauer, D. N.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE 4, e6320 (2009).

Cheng, M.

H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188–2191 (2008).
[CrossRef]

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271–2276 (2007).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugation,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Tunable enhanced light transmission through a single subwavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Erlinger, A.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Fletcher, D. A.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE 4, e6320 (2009).

Francia, G. T. D.

G. T. D. Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento 9, 426–438 (1952).

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugation,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Tunable enhanced light transmission through a single subwavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

Harris, J. L.

Hohng, S. C.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

Isikman, S. O.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
[CrossRef]

Kim, D. S.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Kim, H.

Kim, H. C.

H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188–2191 (2008).
[CrossRef]

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271–2276 (2007).
[CrossRef]

Kim, J.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Ko, H.

H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188–2191 (2008).
[CrossRef]

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271–2276 (2007).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Lam, W. A.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE 4, e6320 (2009).

Lee, B.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Lezec, H. J.

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugation,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Tunable enhanced light transmission through a single subwavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Lienaub, Ch.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Luo, X.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

Maamari, R. N.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE 4, e6320 (2009).

Malyarchuk, V.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugation,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Mudanyali, O.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
[CrossRef]

Mugnai, D.

A. Ranfagni, D. Mugnai, and R. Ruggeri, “Beyond the diffraction limit: super-resolving pupils,” J. Appl. Phys. 95, 2217–2222 (2004).
[CrossRef]

Muller, R.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Ozcan, A.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
[CrossRef]

Park, J.

Park, J. W.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Park, Q. H.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Ranfagni, A.

A. Ranfagni, D. Mugnai, and R. Ruggeri, “Beyond the diffraction limit: super-resolving pupils,” J. Appl. Phys. 95, 2217–2222 (2004).
[CrossRef]

Reivelt, K.

P. Saari, K. Reivelt, and H. Valtna, “Ultralocalized superluminal light pulses,” Laser Physics 17, 297–301 (2007).
[CrossRef]

Ruggeri, R.

A. Ranfagni, D. Mugnai, and R. Ruggeri, “Beyond the diffraction limit: super-resolving pupils,” J. Appl. Phys. 95, 2217–2222 (2004).
[CrossRef]

Ryu, H. Y.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Saari, P.

P. Saari, K. Reivelt, and H. Valtna, “Ultralocalized superluminal light pulses,” Laser Physics 17, 297–301 (2007).
[CrossRef]

Sencan, I.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
[CrossRef]

Seo, S.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
[CrossRef]

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271–2276 (2007).
[CrossRef]

Smith, H. I.

H. I. Smith, “A proposal for maskless, zone-plate-array nanolithography,” J. Vac. Sci. Technol. B 14, 4318–4322 (1996).
[CrossRef]

Su, T.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Switz, N. A.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE 4, e6320 (2009).

Thio, T.

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Tunable enhanced light transmission through a single subwavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Valtna, H.

P. Saari, K. Reivelt, and H. Valtna, “Ultralocalized superluminal light pulses,” Laser Physics 17, 297–301 (2007).
[CrossRef]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Worthinga, P. T.

P. T. Worthinga and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79, 3035 (2001).
[CrossRef]

Yoo, K. H.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Yoon, Y. C.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Adv. Mater. (1)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Tunable enhanced light transmission through a single subwavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

Anal. Chem. (1)

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lensfree blood analysis on a chip,” Anal. Chem. 82, 4621–4627 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugation,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

P. T. Worthinga and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79, 3035 (2001).
[CrossRef]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienaub, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Il Nuovo Cimento (1)

G. T. D. Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento 9, 426–438 (1952).

J. Appl. Phys. (1)

A. Ranfagni, D. Mugnai, and R. Ruggeri, “Beyond the diffraction limit: super-resolving pupils,” J. Appl. Phys. 95, 2217–2222 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (3)

H. I. Smith, “A proposal for maskless, zone-plate-array nanolithography,” J. Vac. Sci. Technol. B 14, 4318–4322 (1996).
[CrossRef]

S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271–2276 (2007).
[CrossRef]

H. Ko, H. C. Kim, and M. Cheng, “Light transmission through a metallic/dielectric nano-optic lens,” J. Vac. Sci. Technol. B 26, 2188–2191 (2008).
[CrossRef]

Laser Physics (1)

P. Saari, K. Reivelt, and H. Valtna, “Ultralocalized superluminal light pulses,” Laser Physics 17, 297–301 (2007).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

PLoS ONE (1)

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE 4, e6320 (2009).

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Other (1)

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Structure of periodic metal annular apertures. Annular apertures are structured in a highly conductive metal layer on a fused silica substrate. R, r, W, T, and P denote aperture outer radius, aperture inner radius, aperture width, metal thickness, and period, respectively. The interface between metal and air is defined as z=0 plane and the optical axis is z-axis. (b) Midfield region defined by the overlapped nonparaxial region.

Fig. 2.
Fig. 2.

Optical field profiles generated by metal periodic annular apertures with the periods (a) P/λ=18, (b) P/λ=10, (c) P/λ=6, and (d) P/λ=3. The reference length of the midfield region (z/λ=4) is indicated by a white dashed line. The reference wavelength is 440 nm.

Fig. 3.
Fig. 3.

Axial intensity density and axial intensity variance for the midfield ranges: (a) 1.1364<z/λ<2.2727, (b) 1.1364<z/λ<4.5455, (c) 1.1364<z/λ<6.8182, (d) 1.1364<z/λ<9.0909. The reference wavelength is 440 nm.

Fig. 4.
Fig. 4.

Graphical representations of (a) the maximum values of the axial intensity density and (b) the maximum values of axial intensity variance evaluated for the samples included in the lower 10% among 59,640 calculated sample pools. The reference wavelength is 440 nm.

Fig. 5.
Fig. 5.

Wavelength dependent light transmission characteristics of metal annular aperture. (a) Light intensity variation of the Ag annular aperture under the illumination wavelengths of 300580nm. (b) Wavelength resonant property of the Ag annular aperture. Annular aperture design parameter used in these simulations is R1025W350P8000.

Fig. 6.
Fig. 6.

Light transmission properties of annular apertures structured in various metals. Annular apertures of various metals uniformly illuminated by 360 nm circularly polarized planewaves, within the design parameter of R1025W350P8000. (a) and (b) graphically compare the transmitted light intensity in x-z and x-y plane for the various annular apertures, i.e., Al, Au, Ti, and Ag. As illustrated in (c), light intensity passing through the Ag annular aperture is much higher than that of other metals and it has a maximum transmission at z=1.58μm. (d) Transmitted light intensity through 100 nm thick metal slabs without the annular aperture structures.

Fig. 7.
Fig. 7.

Broadband SP wavevector variation for the selected highly conductive metals interfacing air. Compared to other metals investigated, Ag shows relatively high SP wavevector, i.e., Re{Ksp/K0}, in the wavelength ranges of 340380nm, which provided a clue in selection of the metal for strong SP excitation at the metal-air interface.

Fig. 8.
Fig. 8.

Beaming performance of the Ag annular aperture. (a) Focused light profile in x-y plane measured at z=1, 2, 3, 4, and 5 μm. (b) The PSFs of the focused light measured in (a). (c) The FWHM values along with z-axis. The reference wavelength is 360 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F(x,y,z)=A(α,β)exp(j2π(αx+βy+γz))dαdβ,
A(α,β)={RJ1(2πRα2+β2)α2+β2rJ1(2πrα2+β2)α2+β2for(α,β)(0,0)πR2πr2for(α,β)=(0,0),
FP(x,y,z)=k=l=F(xkP,ylP,z),

Metrics