Abstract

We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a step-index high nonlinear silica fiber, which was pumped by a 1557 nm subpicosecond-pulse laser in the normal dispersion region. The broad SC spectrum covers the spectral range from 840 to 2390 nm, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave, assuming the peaks near 1550 nm were filtered. The SC source system is constructed by all-fiber components, which can be fusion-spliced together directly with low loss, less than 0.1 dB. Thus the SC source has high energy transfer efficiency from the pump source. The maximum SC average power of 332 mW is obtained, including the peaks near 1550 nm. The spectral density for the 10 dB bandwidth is in the range from 17.3 to 7.3dBm/nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  2. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009).
  3. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418–1420 (2000).
    [CrossRef]
  4. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microestructured optical fibers,” Meas. Sci. Technol. 12, 854–858 (2001).
    [CrossRef]
  5. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical–aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002).
    [CrossRef]
  6. C. Lin and R. H. Stolen, “New nanosecond continuum for exited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [CrossRef]
  7. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers,” J. Lightwave Technol. 27, 2095–2099 (2009).
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, 1999), postdeadline paper CPD8.
  9. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  10. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef]
  11. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef]
  12. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568–3573 (2003).
    [CrossRef]
  13. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004).
    [CrossRef]
  14. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
    [CrossRef]
  15. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
    [CrossRef]
  16. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
    [CrossRef]
  17. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  18. V. A. Arkhireev, A. E. Korolev, D. A. Nolan, and V. V. Solov’ev, “High-efficiency generation of a supercontinuum in an optical fiber,” Opt. Spectrosc. 94, 632–637 (2003).
  19. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
    [CrossRef]
  20. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12, 317–324 (2004).
    [CrossRef]
  21. F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “All-solid highly nonlinear single mode fibers with a tailored dispersion profile,” Opt. Express 19, 66–80 (2011).
    [CrossRef]
  22. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, and A. Yablon, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003).
    [CrossRef]
  23. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
  24. J. W. Nicholson, and M. F. Yan, “Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm,” Opt. Express 12, 679–688 (2004).
    [CrossRef]
  25. J. W. Nicholson, A. D. Yablon, M. F. Yan, P. Wisk, R. Bise, D. J. Trevor, J. Alonzo, T. Stockert, J. Fleming, E. Monberg, F. Dimarcello, and J. Fini, “Coherence of supercontinua generated by ultrashort pulses compressed in optical fibers,” Opt. Lett. 33, 2038–2040 (2008).
    [CrossRef]
  26. J. W. Nicholson, R. Bise, J. Alonzo, T. Stockert, D. J. Trevor, F. Dimarcello, E. Monberg, J. Fini, P. S. Westbrook, K. Feder, and L. Grüner-Nielsen, “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber,” Opt. Lett. 33, 28–30 (2008).
    [CrossRef]
  27. M. R. A. Moghammad, S. W. Harun, R. Akbari, and H. Ahmad, “Flatly broadened supercontinuum generation in nonlinear fibers using a mode-locked bismuth oxide based erbium doped fiber laser,” Laser Phys. Lett. 8, 369–375 (2011).
  28. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
    [CrossRef]

2011

F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “All-solid highly nonlinear single mode fibers with a tailored dispersion profile,” Opt. Express 19, 66–80 (2011).
[CrossRef]

M. R. A. Moghammad, S. W. Harun, R. Akbari, and H. Ahmad, “Flatly broadened supercontinuum generation in nonlinear fibers using a mode-locked bismuth oxide based erbium doped fiber laser,” Laser Phys. Lett. 8, 369–375 (2011).

2010

2009

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009).

C. Chaudhari, T. Suzuki, and Y. Ohishi, “Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers,” J. Lightwave Technol. 27, 2095–2099 (2009).

2008

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2004

2003

2002

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical–aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002).
[CrossRef]

2001

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microestructured optical fibers,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

2000

1977

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

1976

C. Lin and R. H. Stolen, “New nanosecond continuum for exited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Abeeluck, A. K.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).

Ahmad, H.

M. R. A. Moghammad, S. W. Harun, R. Akbari, and H. Ahmad, “Flatly broadened supercontinuum generation in nonlinear fibers using a mode-locked bismuth oxide based erbium doped fiber laser,” Laser Phys. Lett. 8, 369–375 (2011).

Akbari, R.

M. R. A. Moghammad, S. W. Harun, R. Akbari, and H. Ahmad, “Flatly broadened supercontinuum generation in nonlinear fibers using a mode-locked bismuth oxide based erbium doped fiber laser,” Laser Phys. Lett. 8, 369–375 (2011).

Alonzo, J.

Arkhireev, V. A.

V. A. Arkhireev, A. E. Korolev, D. A. Nolan, and V. V. Solov’ev, “High-efficiency generation of a supercontinuum in an optical fiber,” Opt. Spectrosc. 94, 632–637 (2003).

Asimakis, S.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microestructured optical fibers,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microestructured optical fibers,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Birks, T. A.

Bise, R.

Boppart, S. A.

Brilland, L.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microestructured optical fibers,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Chaudhari, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Désévédavy, F.

Dimarcello, F.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009).

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

El-Amraoui, M.

Fatome, J.

Feder, K.

Feng, X.

Finazzi, V.

Fini, J.

Fleming, J.

Fortier, C.

Frampton, K.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microestructured optical fibers,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Gadret, G.

Gao, W.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Goto, T.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Grüner-Nielsen, L.

Harun, S. W.

M. R. A. Moghammad, S. W. Harun, R. Akbari, and H. Ahmad, “Flatly broadened supercontinuum generation in nonlinear fibers using a mode-locked bismuth oxide based erbium doped fiber laser,” Laser Phys. Lett. 8, 369–375 (2011).

Haus, H. A.

Headley, C.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Hori, T.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Ippen, E. P.

Izawa, T.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

Jorgensen, C. G.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).

Jules, J. C.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Koizumi, F.

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Korolev, A. E.

V. A. Arkhireev, A. E. Korolev, D. A. Nolan, and V. V. Solov’ev, “High-efficiency generation of a supercontinuum in an optical fiber,” Opt. Spectrosc. 94, 632–637 (2003).

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

Lin, C.

C. Lin and R. H. Stolen, “New nanosecond continuum for exited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Loh, W. H.

Maillotte, H.

Marks, D. L.

Messaddeq, Y.

Moghammad, M. R. A.

M. R. A. Moghammad, S. W. Harun, R. Akbari, and H. Ahmad, “Flatly broadened supercontinuum generation in nonlinear fibers using a mode-locked bismuth oxide based erbium doped fiber laser,” Laser Phys. Lett. 8, 369–375 (2011).

Monberg, E.

Monro, T. M.

Moore, R. C.

Mussot, A.

Nicholson, J. W.

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Nishizawa, N.

Nolan, D. A.

V. A. Arkhireev, A. E. Korolev, D. A. Nolan, and V. V. Solov’ev, “High-efficiency generation of a supercontinuum in an optical fiber,” Opt. Spectrosc. 94, 632–637 (2003).

Ohishi, Y.

Oldenburg, A. L.

Petropoulos, P.

Petrovich, M. N.

Poletti, F.

Ponzo, G. M.

Provino, L.

Qin, G.

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Ranka, J. K.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, 1999), postdeadline paper CPD8.

Reynolds, J. J.

Richardson, D. J.

Russell, P. St. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

Shibata, N.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

Skripatchev, I.

Smektala, F.

Solov’ev, V. V.

V. A. Arkhireev, A. E. Korolev, D. A. Nolan, and V. V. Solov’ev, “High-efficiency generation of a supercontinuum in an optical fiber,” Opt. Spectrosc. 94, 632–637 (2003).

Stentz, A. J.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, 1999), postdeadline paper CPD8.

Stockert, T.

Stolen, R. H.

C. Lin and R. H. Stolen, “New nanosecond continuum for exited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Suzuki, T.

Sylvestre, T.

Sysoliatin, A.

Takayanagi, J.

Takeda, A.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009).

Trevor, D. J.

Troles, J.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, 1999), postdeadline paper CPD8.

Wisk, P.

Wong, W. S.

Yablon, A.

Yablon, A. D.

Yan, M. F.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

Yu, C. X.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Appl. Phys. B

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).

Appl. Phys. Lett.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

C. Lin and R. H. Stolen, “New nanosecond continuum for exited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

J. Lightwave Technol.

Laser Phys. Lett.

M. R. A. Moghammad, S. W. Harun, R. Akbari, and H. Ahmad, “Flatly broadened supercontinuum generation in nonlinear fibers using a mode-locked bismuth oxide based erbium doped fiber laser,” Laser Phys. Lett. 8, 369–375 (2011).

Meas. Sci. Technol.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microestructured optical fibers,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Nat. Photon.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009).

Opt. Express

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[CrossRef]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568–3573 (2003).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004).
[CrossRef]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12, 317–324 (2004).
[CrossRef]

F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “All-solid highly nonlinear single mode fibers with a tailored dispersion profile,” Opt. Express 19, 66–80 (2011).
[CrossRef]

J. W. Nicholson, and M. F. Yan, “Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm,” Opt. Express 12, 679–688 (2004).
[CrossRef]

Opt. Lett.

J. W. Nicholson, A. D. Yablon, M. F. Yan, P. Wisk, R. Bise, D. J. Trevor, J. Alonzo, T. Stockert, J. Fleming, E. Monberg, F. Dimarcello, and J. Fini, “Coherence of supercontinua generated by ultrashort pulses compressed in optical fibers,” Opt. Lett. 33, 2038–2040 (2008).
[CrossRef]

J. W. Nicholson, R. Bise, J. Alonzo, T. Stockert, D. J. Trevor, F. Dimarcello, E. Monberg, J. Fini, P. S. Westbrook, K. Feder, and L. Grüner-Nielsen, “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber,” Opt. Lett. 33, 28–30 (2008).
[CrossRef]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, and A. Yablon, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003).
[CrossRef]

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418–1420 (2000).
[CrossRef]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical–aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

Opt. Spectrosc.

V. A. Arkhireev, A. E. Korolev, D. A. Nolan, and V. V. Solov’ev, “High-efficiency generation of a supercontinuum in an optical fiber,” Opt. Spectrosc. 94, 632–637 (2003).

Phys. Rev. Lett.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, 1999), postdeadline paper CPD8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Scheme for SC generation in silica HNLF. OSA: optical spectrum analyzer; OS: oscilloscope; AC: autocorrelator; PM: power meter; ×: fusion splicing point.

Fig. 2.
Fig. 2.

Autocorrelator trace of the pulse. (a) Measured from the output of EDFA; (b) measured after 3 m SSMF; (c) pulse width and peak power with different average powers; (d) autocorrelator trace with different peak powers.

Fig. 3.
Fig. 3.

Measured dispersion profile of the silica HNLF.

Fig. 4.
Fig. 4.

SC spectra generated in HNLF versus different peak powers of the 600 fs pulse.

Fig. 5.
Fig. 5.

Measured repetition rate of the SC in the range of 840 to 1700 nm at the pump peak power of 46.71 kW.

Fig. 6.
Fig. 6.

Time-domain detail of the SC in the range of 1400 to 1650 nm at the pump peak power of 46.71 kW.

Fig. 7.
Fig. 7.

Measured average power of SC spectra versus the average power of the 600 fs pump pulse.

Fig. 8.
Fig. 8.

Spectral density for the 10 dBm bandwidth range from 1120 to 2245 nm with the pump peak power of 46.71kW.

Metrics