Abstract

We demonstrate an all-fiber Q-switched laser operation in the 2 µm region on the basis of a dynamic periodic microbend and pulsed-pump configuration. A single-mode thulium-doped silica fiber is pumped by 1.6 µm-band laser diodes, and the dynamic loss is introduced in the fiber ring resonator by the periodic microbend that is electrically controlled with a piezoelectric actuator. When the voltage-off period of the piezoelectric actuator is set at 20 µs for the pump power of 120 mW, the output pulse power is measured by 420 mW with a pulse width of 1.3 µs.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm-Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
    [Crossref]
  2. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49, 562–567 (2010).
    [Crossref]
  3. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30, 184–190 (2002).
    [Crossref]
  4. A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
    [Crossref]
  5. W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26, 746–747 (1990).
    [Crossref]
  6. T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 µm Tm-doped silica fibre laser pumped at 1.57 µm,” Electron. Lett. 30, 220–221 (1994).
    [Crossref]
  7. R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
    [Crossref]
  8. A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218, 337–344 (2003).
    [Crossref]
  9. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
    [Crossref]
  10. P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
    [Crossref]
  11. J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2 μm,” Opt. Lett. 34, 3713–3715 (2009).
    [Crossref]
  12. J. N. Blake, B. Y. Kim, and H. J. Shaw, “Fiber-optic modal coupler using periodic microbending,” Opt. Lett. 11, 177–179 (1986).
    [Crossref]
  13. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25, 710–712 (2000).
    [Crossref]
  14. I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett. 24, 1263–1265 (1999).
    [Crossref]
  15. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [Crossref]
  16. T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003).
    [Crossref]

2010 (1)

2009 (2)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[Crossref]

J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2 μm,” Opt. Lett. 34, 3713–3715 (2009).
[Crossref]

2006 (1)

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[Crossref]

2003 (2)

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218, 337–344 (2003).
[Crossref]

T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003).
[Crossref]

2002 (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30, 184–190 (2002).
[Crossref]

2000 (1)

1999 (1)

1996 (1)

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

1995 (2)

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[Crossref]

T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm-Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
[Crossref]

1994 (1)

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 µm Tm-doped silica fibre laser pumped at 1.57 µm,” Electron. Lett. 30, 220–221 (1994).
[Crossref]

1993 (1)

P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[Crossref]

1990 (1)

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26, 746–747 (1990).
[Crossref]

1986 (1)

Amzajerdian, F.

Barnard, C.

P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[Crossref]

Barnes, N. P.

Barnes, W. L.

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26, 746–747 (1990).
[Crossref]

Bayon, J.-F.

P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[Crossref]

Bhatia, V.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Blake, J. N.

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[Crossref]

Chiu, C.-Y.

T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003).
[Crossref]

Chrostowski, J.

P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[Crossref]

Davey, S. T.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[Crossref]

De Young, R. J.

Digonnet, M. J. F.

El-Sherif, A. F.

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218, 337–344 (2003).
[Crossref]

Erdogan, T.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Fried, N. M.

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[Crossref]

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[Crossref]

Geng, J.

Hwang, I. K.

Jackson, S. D.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30, 184–190 (2002).
[Crossref]

Jiang, S.

Judkins, J. B.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Kang, J. U.

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[Crossref]

Kiang, Y.-W.

T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003).
[Crossref]

Kim, B. Y.

King, T. A.

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218, 337–344 (2003).
[Crossref]

Kino, G. S.

Komukai, T.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 µm Tm-doped silica fibre laser pumped at 1.57 µm,” Electron. Lett. 30, 220–221 (1994).
[Crossref]

Lauto, A.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30, 184–190 (2002).
[Crossref]

Lemaire, P. J.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Lin, C.-N.

T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003).
[Crossref]

Louka, M.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[Crossref]

Luo, T.

Ma, K.-J.

T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003).
[Crossref]

Miyajima, Y.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 µm Tm-doped silica fibre laser pumped at 1.57 µm,” Electron. Lett. 30, 220–221 (1994).
[Crossref]

Morse, T. F.

T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm-Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
[Crossref]

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[Crossref]

Myslinski, P.

P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[Crossref]

Ngo, A. K.

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[Crossref]

Oh, K.

T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm-Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
[Crossref]

Pan, X.

P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[Crossref]

Percival, R. M.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[Crossref]

Perrin, S. D.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[Crossref]

Reinhart, L.

T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm-Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
[Crossref]

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[Crossref]

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[Crossref]

Savin, S.

Seltzer, C. P.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[Crossref]

Sharma, U.

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[Crossref]

Shaw, H. J.

Sipe, J. E.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[Crossref]

Smith, J.

Sullivan, B. T.

P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[Crossref]

Szebesta, D.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[Crossref]

Tang, T.-Y.

T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003).
[Crossref]

Townsend, J. E.

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26, 746–747 (1990).
[Crossref]

Tseng, P.-Y.

T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003).
[Crossref]

Vengsarkar, M.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[Crossref]

Wang, Q.

Yamamoto, T.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 µm Tm-doped silica fibre laser pumped at 1.57 µm,” Electron. Lett. 30, 220–221 (1994).
[Crossref]

Yang, C. C.

T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003).
[Crossref]

Yun, S. H.

Appl. Opt. (1)

Electron. Lett. (2)

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26, 746–747 (1990).
[Crossref]

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 µm Tm-doped silica fibre laser pumped at 1.57 µm,” Electron. Lett. 30, 220–221 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[Crossref]

J. Lightwave Technol. (1)

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Lasers Surg. Med. (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30, 184–190 (2002).
[Crossref]

Opt. Commun. (1)

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218, 337–344 (2003).
[Crossref]

Opt. Eng. (2)

P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan, and J.-F. Bayon, “Q-switched thulium-doped fiber laser,” Opt. Eng. 32, 2025–2030 (1993).
[Crossref]

T.-Y. Tang, P.-Y. Tseng, C.-Y. Chiu, C.-N. Lin, C. C. Yang, Y.-W. Kiang, and K.-J. Ma, “Long-period fiber grating effects induced by double-sided loading,” Opt. Eng. 42, 1910–1914 (2003).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (2)

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[Crossref]

T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm-Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Cross-sectional view of a dynamic periodic microbend driven by piezoelectric actuators.

Fig. 2.
Fig. 2.

Transmittance of a 1.9 μm laser light through the periodic microbend showing the effect of the phase difference between the upper and lower rod arrays.

Fig. 3.
Fig. 3.

Transmission spectra of the single-mode fiber pressed (a) with and (b) without the graphite rod array. The dotted curve (c) shows the transmission spectrum of the single-mode fiber without a load.

Fig. 4.
Fig. 4.

Schematic diagram of the Tm-doped fiber ring laser using a piezoelectric microbend to provide Q-switching operation.

Fig. 5.
Fig. 5.

Typical output laser pulse (lower curve); the driving voltage applied to the PA is also shown (upper curve).

Fig. 6.
Fig. 6.

Output pulse power as a function of pump LD power. Inset shows the emission spectrum of the fiber laser output.

Fig. 7.
Fig. 7.

Output pulse power versus voltage-off period of the piezoelectric actuator.

Metrics