Abstract

Measuring constituent concentrations of processing liquids provides highly useful data for industrial process control. Techniques that allow online measurement will greatly save resources and energy, making them highly attractive for enterprises. In this paper, we develop a technique based on time-resolved photoacoustics for simultaneously measuring the optical absorption coefficient, acoustic speed, and thermal-acoustic transformation coefficient of an absorbing liquid, using an experimental setup that merely employs a nanosecond pulsed laser with millijoule energy and a single piezoelectric transducer with a wide frequency bandwidth. As investigated samples, we use potassium chromate, glucose, and their mixing solutions. Experimental results show that the value of each parameter measured in a mixed solution is approximately equal to the sum value of the same parameter in the constituent solutions. This means that a simultaneous measurement of these parameters enables us to calculate two or three constituent concentrations in a mixed liquid, if the constituent substances differ clearly from one another in terms of their optical absorption, acoustic speed, or thermal-acoustic transformation properties.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tormanen, J. Niemi, T. Lofqvist, and R. Myllyla, “Pulp consistency determined by a combination of optical and acoustical measurement techniques,” Meas. Sci. Technol. 17, 695–702 (2006).
    [CrossRef]
  2. Q. Zhu, D. Sullivan, B. Chance, and T. Dambro, “Combined ultrasound and near infrared diffused light imaging in a test object,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
  3. C. A. DiMarzio and T. W. Murray, “Medical imaging techniques combining light and ultrasound,” Subsurf. Sens. Technol. Appl. 4, 289–309 (2003).
  4. V. Cunningham and H. Lamela, “Optical and optoacoustic measurements of the absorption properties of spherical gold nanoparticles within a highly scattering medium,” Opt. Laser Technol. 42, 769–774 (2010).
    [CrossRef]
  5. J. Niemi, T. Lofqvist, and P. Gren, “On a new sensing strategy using a combination of ultrasonic and photoacoustic techniques,” in Proceedings of IEEE Conference on Ultrasonic Symposium (IEEE, 2006), pp. 1797–1800.
  6. S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).
  7. Y. Shen, Z. Lu, S. Spiers, H. MacKenzie, H. Ashton, J. Hannigan, S. Freeborn, and J. Lindberg, “Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique,” Appl. Opt. 39, 4007–4012 (2000).
    [CrossRef]
  8. A. Kimoto and T. Kitajima, “An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid,” Meas. Sci. Technol. 21, 035204 (2010).
  9. Z. Zhao and R. Myllylä, “Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: photoacoustic detection of scattering light,” Appl. Opt. 44, 7845–7852 (2005).
    [CrossRef]
  10. Z. Zhao, M. Törmänen, and R. Myllylä, “A preliminary measurement of fibres and fines in pulp suspensions by the scattering photoacoustic technique,” Meas. Sci. Technol. 17, 128–134 (2006).
    [CrossRef]
  11. Z. Zhao, M. Törmänen, and R. Myllylä, “Backward-mode photoacoustic transducer for sensing optical scattering and ultrasonic attenuation: determining fraction consistency in pulp suspensions,” Meas. Sci. Technol. 21, 025105 (2010).
    [CrossRef]
  12. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
  13. A. Oraevsky, S. Jacques, and F. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
    [CrossRef]
  14. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60, R83–R121 (1986).
    [CrossRef]
  15. H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).
  16. Z. Zhao, “Pulsed photoacoustic techniques and glucose determination in human blood and tissue,” doctoral thesis (Acta Universitatis Ouluensis, Series C 169, 2002).

2010

V. Cunningham and H. Lamela, “Optical and optoacoustic measurements of the absorption properties of spherical gold nanoparticles within a highly scattering medium,” Opt. Laser Technol. 42, 769–774 (2010).
[CrossRef]

A. Kimoto and T. Kitajima, “An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid,” Meas. Sci. Technol. 21, 035204 (2010).

Z. Zhao, M. Törmänen, and R. Myllylä, “Backward-mode photoacoustic transducer for sensing optical scattering and ultrasonic attenuation: determining fraction consistency in pulp suspensions,” Meas. Sci. Technol. 21, 025105 (2010).
[CrossRef]

2006

Z. Zhao, M. Törmänen, and R. Myllylä, “A preliminary measurement of fibres and fines in pulp suspensions by the scattering photoacoustic technique,” Meas. Sci. Technol. 17, 128–134 (2006).
[CrossRef]

M. Tormanen, J. Niemi, T. Lofqvist, and R. Myllyla, “Pulp consistency determined by a combination of optical and acoustical measurement techniques,” Meas. Sci. Technol. 17, 695–702 (2006).
[CrossRef]

2005

2004

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

2003

C. A. DiMarzio and T. W. Murray, “Medical imaging techniques combining light and ultrasound,” Subsurf. Sens. Technol. Appl. 4, 289–309 (2003).

2000

1999

Q. Zhu, D. Sullivan, B. Chance, and T. Dambro, “Combined ultrasound and near infrared diffused light imaging in a test object,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).

H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).

1997

1986

W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60, R83–R121 (1986).
[CrossRef]

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).

Aglyamov, S. R.

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

Ashton, H.

Y. Shen, Z. Lu, S. Spiers, H. MacKenzie, H. Ashton, J. Hannigan, S. Freeborn, and J. Lindberg, “Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique,” Appl. Opt. 39, 4007–4012 (2000).
[CrossRef]

H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).

Chance, B.

Q. Zhu, D. Sullivan, B. Chance, and T. Dambro, “Combined ultrasound and near infrared diffused light imaging in a test object,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).

Cunningham, V.

V. Cunningham and H. Lamela, “Optical and optoacoustic measurements of the absorption properties of spherical gold nanoparticles within a highly scattering medium,” Opt. Laser Technol. 42, 769–774 (2010).
[CrossRef]

Dambro, T.

Q. Zhu, D. Sullivan, B. Chance, and T. Dambro, “Combined ultrasound and near infrared diffused light imaging in a test object,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).

DiMarzio, C. A.

C. A. DiMarzio and T. W. Murray, “Medical imaging techniques combining light and ultrasound,” Subsurf. Sens. Technol. Appl. 4, 289–309 (2003).

Emelianova, S. Y.

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

Freeborn, S.

Y. Shen, Z. Lu, S. Spiers, H. MacKenzie, H. Ashton, J. Hannigan, S. Freeborn, and J. Lindberg, “Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique,” Appl. Opt. 39, 4007–4012 (2000).
[CrossRef]

H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).

Gren, P.

J. Niemi, T. Lofqvist, and P. Gren, “On a new sensing strategy using a combination of ultrasonic and photoacoustic techniques,” in Proceedings of IEEE Conference on Ultrasonic Symposium (IEEE, 2006), pp. 1797–1800.

Hannigan, J.

Y. Shen, Z. Lu, S. Spiers, H. MacKenzie, H. Ashton, J. Hannigan, S. Freeborn, and J. Lindberg, “Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique,” Appl. Opt. 39, 4007–4012 (2000).
[CrossRef]

H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).

Jacques, S.

Karpiouk, A.

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

Kimoto, A.

A. Kimoto and T. Kitajima, “An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid,” Meas. Sci. Technol. 21, 035204 (2010).

Kitajima, T.

A. Kimoto and T. Kitajima, “An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid,” Meas. Sci. Technol. 21, 035204 (2010).

Lamela, H.

V. Cunningham and H. Lamela, “Optical and optoacoustic measurements of the absorption properties of spherical gold nanoparticles within a highly scattering medium,” Opt. Laser Technol. 42, 769–774 (2010).
[CrossRef]

Lindberg, J.

Y. Shen, Z. Lu, S. Spiers, H. MacKenzie, H. Ashton, J. Hannigan, S. Freeborn, and J. Lindberg, “Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique,” Appl. Opt. 39, 4007–4012 (2000).
[CrossRef]

H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).

Lofqvist, T.

M. Tormanen, J. Niemi, T. Lofqvist, and R. Myllyla, “Pulp consistency determined by a combination of optical and acoustical measurement techniques,” Meas. Sci. Technol. 17, 695–702 (2006).
[CrossRef]

J. Niemi, T. Lofqvist, and P. Gren, “On a new sensing strategy using a combination of ultrasonic and photoacoustic techniques,” in Proceedings of IEEE Conference on Ultrasonic Symposium (IEEE, 2006), pp. 1797–1800.

Lu, Z.

MacKenzie, H.

Y. Shen, Z. Lu, S. Spiers, H. MacKenzie, H. Ashton, J. Hannigan, S. Freeborn, and J. Lindberg, “Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique,” Appl. Opt. 39, 4007–4012 (2000).
[CrossRef]

H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).

Massoud, Motamedi

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

Murray, T. W.

C. A. DiMarzio and T. W. Murray, “Medical imaging techniques combining light and ultrasound,” Subsurf. Sens. Technol. Appl. 4, 289–309 (2003).

Myllyla, R.

M. Tormanen, J. Niemi, T. Lofqvist, and R. Myllyla, “Pulp consistency determined by a combination of optical and acoustical measurement techniques,” Meas. Sci. Technol. 17, 695–702 (2006).
[CrossRef]

Myllylä, R.

Z. Zhao, M. Törmänen, and R. Myllylä, “Backward-mode photoacoustic transducer for sensing optical scattering and ultrasonic attenuation: determining fraction consistency in pulp suspensions,” Meas. Sci. Technol. 21, 025105 (2010).
[CrossRef]

Z. Zhao, M. Törmänen, and R. Myllylä, “A preliminary measurement of fibres and fines in pulp suspensions by the scattering photoacoustic technique,” Meas. Sci. Technol. 17, 128–134 (2006).
[CrossRef]

Z. Zhao and R. Myllylä, “Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: photoacoustic detection of scattering light,” Appl. Opt. 44, 7845–7852 (2005).
[CrossRef]

Niemi, J.

M. Tormanen, J. Niemi, T. Lofqvist, and R. Myllyla, “Pulp consistency determined by a combination of optical and acoustical measurement techniques,” Meas. Sci. Technol. 17, 695–702 (2006).
[CrossRef]

J. Niemi, T. Lofqvist, and P. Gren, “On a new sensing strategy using a combination of ultrasonic and photoacoustic techniques,” in Proceedings of IEEE Conference on Ultrasonic Symposium (IEEE, 2006), pp. 1797–1800.

Oraevsky, A.

Oraevsky, A. A.

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

Rae, P.

H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).

Schmitt, R.

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

Scott, W. G.

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

Sethuraman, S.

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

Shah, J.

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

Shen, Y.

Y. Shen, Z. Lu, S. Spiers, H. MacKenzie, H. Ashton, J. Hannigan, S. Freeborn, and J. Lindberg, “Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique,” Appl. Opt. 39, 4007–4012 (2000).
[CrossRef]

H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).

Sigrist, W.

W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60, R83–R121 (1986).
[CrossRef]

Spiers, S.

Y. Shen, Z. Lu, S. Spiers, H. MacKenzie, H. Ashton, J. Hannigan, S. Freeborn, and J. Lindberg, “Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique,” Appl. Opt. 39, 4007–4012 (2000).
[CrossRef]

H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).

Sullivan, D.

Q. Zhu, D. Sullivan, B. Chance, and T. Dambro, “Combined ultrasound and near infrared diffused light imaging in a test object,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).

Tittel, F.

Tormanen, M.

M. Tormanen, J. Niemi, T. Lofqvist, and R. Myllyla, “Pulp consistency determined by a combination of optical and acoustical measurement techniques,” Meas. Sci. Technol. 17, 695–702 (2006).
[CrossRef]

Törmänen, M.

Z. Zhao, M. Törmänen, and R. Myllylä, “Backward-mode photoacoustic transducer for sensing optical scattering and ultrasonic attenuation: determining fraction consistency in pulp suspensions,” Meas. Sci. Technol. 21, 025105 (2010).
[CrossRef]

Z. Zhao, M. Törmänen, and R. Myllylä, “A preliminary measurement of fibres and fines in pulp suspensions by the scattering photoacoustic technique,” Meas. Sci. Technol. 17, 128–134 (2006).
[CrossRef]

Zhao, Z.

Z. Zhao, M. Törmänen, and R. Myllylä, “Backward-mode photoacoustic transducer for sensing optical scattering and ultrasonic attenuation: determining fraction consistency in pulp suspensions,” Meas. Sci. Technol. 21, 025105 (2010).
[CrossRef]

Z. Zhao, M. Törmänen, and R. Myllylä, “A preliminary measurement of fibres and fines in pulp suspensions by the scattering photoacoustic technique,” Meas. Sci. Technol. 17, 128–134 (2006).
[CrossRef]

Z. Zhao and R. Myllylä, “Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: photoacoustic detection of scattering light,” Appl. Opt. 44, 7845–7852 (2005).
[CrossRef]

Z. Zhao, “Pulsed photoacoustic techniques and glucose determination in human blood and tissue,” doctoral thesis (Acta Universitatis Ouluensis, Series C 169, 2002).

Zhu, Q.

Q. Zhu, D. Sullivan, B. Chance, and T. Dambro, “Combined ultrasound and near infrared diffused light imaging in a test object,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).

Appl. Opt.

Clinical Chem.

H. MacKenzie, H. Ashton, S. Spiers, Y. Shen, S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clinical Chem. 45, 1587–1595 (1999).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

Q. Zhu, D. Sullivan, B. Chance, and T. Dambro, “Combined ultrasound and near infrared diffused light imaging in a test object,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).

J. Appl. Phys.

W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60, R83–R121 (1986).
[CrossRef]

Meas. Sci. Technol.

Z. Zhao, M. Törmänen, and R. Myllylä, “A preliminary measurement of fibres and fines in pulp suspensions by the scattering photoacoustic technique,” Meas. Sci. Technol. 17, 128–134 (2006).
[CrossRef]

Z. Zhao, M. Törmänen, and R. Myllylä, “Backward-mode photoacoustic transducer for sensing optical scattering and ultrasonic attenuation: determining fraction consistency in pulp suspensions,” Meas. Sci. Technol. 21, 025105 (2010).
[CrossRef]

A. Kimoto and T. Kitajima, “An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid,” Meas. Sci. Technol. 21, 035204 (2010).

M. Tormanen, J. Niemi, T. Lofqvist, and R. Myllyla, “Pulp consistency determined by a combination of optical and acoustical measurement techniques,” Meas. Sci. Technol. 17, 695–702 (2006).
[CrossRef]

Opt. Laser Technol.

V. Cunningham and H. Lamela, “Optical and optoacoustic measurements of the absorption properties of spherical gold nanoparticles within a highly scattering medium,” Opt. Laser Technol. 42, 769–774 (2010).
[CrossRef]

Proc. SPIE

S. Y. Emelianova, S. R. Aglyamov, J. Shah, S. Sethuraman, W. G. Scott, R. Schmitt, Motamedi Massoud, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic and elasticity imaging,” Proc. SPIE 5320, 101–112 (2004).

Rev. Mod. Phys.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).

Subsurf. Sens. Technol. Appl.

C. A. DiMarzio and T. W. Murray, “Medical imaging techniques combining light and ultrasound,” Subsurf. Sens. Technol. Appl. 4, 289–309 (2003).

Other

J. Niemi, T. Lofqvist, and P. Gren, “On a new sensing strategy using a combination of ultrasonic and photoacoustic techniques,” in Proceedings of IEEE Conference on Ultrasonic Symposium (IEEE, 2006), pp. 1797–1800.

Z. Zhao, “Pulsed photoacoustic techniques and glucose determination in human blood and tissue,” doctoral thesis (Acta Universitatis Ouluensis, Series C 169, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Principle of time-resolved photoacoustic measurement: (a) radiation and detection, (b) measurands of received signals.

Fig. 2.
Fig. 2.

Experimental scheme of time-resolved photoacoustic measurement.

Fig. 3.
Fig. 3.

Typical TR-PA signals recorded in K 2 CrO 4 solutions with different concentrations (the inserted graph is shown in the semilogarithm axis).

Fig. 4.
Fig. 4.

Experimental results of calibration solutions (standard deviations are smaller than the marks).

Fig. 5.
Fig. 5.

Relative change of the three parameters with glucose concentration (error bars for acoustic speed and absorption coefficient are smaller than the marks).

Fig. 6.
Fig. 6.

Measurement results of the three parameters obtained from mixed solutions containing K 2 CrO 4 and glucose.

Tables (1)

Tables Icon

Table 1. Comparing Relative Changes in the Three Parameters Deduced from Fig. 6 and the Sum of Figs. 4 and 5

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p ( t ) E 0 α β v 2 C p exp [ α ( z 0 v t ) ] , ( 0 < t < z 0 / v ) ,
log S ( t ) = α v t + ( log S m α z 0 ) ,
k R ( α ) = S m , cs α Γ w .
k R ( α ) = 0.008 α 4 + 0.086 α 3 0.3446 α 2 + 0.5791 α + 0.6558.

Metrics