Abstract

We present a compact infrared cryogenic multichannel camera with a wide field of view equal to 120°. By merging the optics with the detector, the concept is compatible with both cryogenic constraints and wafer-level fabrication. The design strategy of such a camera is described, as well as its fabrication and integration process. Its characterization has been carried out in terms of the modulation transfer function and the noise equivalent temperature difference (NETD). The optical system is limited by the diffraction. By cooling the optics, we achieve a very low NETD equal to 15 mK compared with traditional infrared cameras. A postprocessing algorithm that aims at reconstructing a well-sampled image from the set of undersampled raw subimages produced by the camera is proposed and validated on experimental images.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989).
    [CrossRef]
  2. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
    [CrossRef]
  3. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
    [CrossRef]
  4. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303–4310 (2004).
    [CrossRef]
  5. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Express 13, 889–903 (2005).
    [CrossRef]
  6. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
    [CrossRef]
  7. K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects,” Opt. Express 17, 15747–15759 (2009).
    [CrossRef]
  8. G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluére, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
    [CrossRef]
  9. A. Brückner, J. Duparré, F. Wippermann, R. Leitel, P. Dannberg, and A. Bräuer, “Ultra-compact close-up microoptical imaging system,” Proc. SPIE 7786, 77860A-1–77860A-8 (2010).
  10. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010).
    [CrossRef]
  11. J. Meyer, A. Brückner, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Optical cluster eye fabricated on wafer-level,” Opt. Express 19, 17506–17519 (2011).
    [CrossRef]
  12. L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).
  13. L. C. Laycock and V. A. Handerek, “Miniature imaging devices for airborne platforms,” Proc. SPIE 7113, 71130M-1–71130M-9 (2008).
  14. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008).
    [CrossRef]
  15. A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons, A. Silver, R. Te Kolste, C. Chen, T. Dillon, and D. Prather, “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 48, 2115–2126 (2009).
    [CrossRef]
  16. A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuit Syst. 24, 652–654 (1977).
    [CrossRef]
  17. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43, 1719–1727 (2004).
    [CrossRef]
  18. K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893–2900 (2006).
    [CrossRef]
  19. K. Choi and T. J. Schulz, “Signal-processing approaches for image-resolution restoration for TOMBO imagery,” Appl. Opt. 47, B104–B116 (2008).
    [CrossRef]
  20. A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “TOMBO sensor with scene-independent superresolution processing,” Opt. Lett. 32, 2855–2857 (2007).
    [CrossRef]
  21. J. Shi, S. E. Reichenbach, and J. D. Howe, “Small-kernel superresolution methods for microscanning imaging systems,” Appl. Opt. 45, 1203–1214 (2006).
    [CrossRef]
  22. G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).
  23. F. de la Barrière, G. Druart, N. Guérineau, and J. Taboury, “Design strategies to simplify and miniaturize imaging systems,” Appl. Opt. 50, 943–951 (2011).
    [CrossRef]
  24. F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010).
    [CrossRef]
  25. R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).
  26. http://www.suss-microoptics.com .
  27. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005), p. 444.
  28. M. J. Kidger, Fundamental Optical Design (SPIE, 2002).
  29. P. Refregier, “Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency,” Opt. Lett. 16, 829–831 (1991).
    [CrossRef]
  30. M. W. Haney, “Performance scaling in flat imagers,” Appl. Opt. 45, 2901–2910 (2006).
    [CrossRef]
  31. M. W. Haney, “Comments on “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 50, 1584–1586 (2011).
    [CrossRef]
  32. D. J. Brady, “Reply to “Comments on multiple aperture cameras,” Appl. Opt. 50, 1587–1592 (2011).
    [CrossRef]

2011 (5)

2010 (4)

F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010).
[CrossRef]

A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010).
[CrossRef]

R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).

A. Brückner, J. Duparré, F. Wippermann, R. Leitel, P. Dannberg, and A. Bräuer, “Ultra-compact close-up microoptical imaging system,” Proc. SPIE 7786, 77860A-1–77860A-8 (2010).

2009 (3)

2008 (3)

2007 (2)

L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).

A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “TOMBO sensor with scene-independent superresolution processing,” Opt. Lett. 32, 2855–2857 (2007).
[CrossRef]

2006 (3)

2005 (2)

2004 (2)

2003 (1)

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

2001 (1)

1991 (1)

1989 (1)

1977 (1)

A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuit Syst. 24, 652–654 (1977).
[CrossRef]

Ackerman, J. R.

Brady, D.

Brady, D. J.

Bräuer, A.

Brückner, A.

Carriere, J.

Chen, C.

Choi, K.

Dannberg, P.

de la Barrière, F.

Deschamps, J.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010).
[CrossRef]

Dillon, T.

Druart, G.

Duparré, J.

Eisner, M.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Fendler, M.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluére, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
[CrossRef]

Fleet, E. F.

Gibbons, R.

Gläbe, R.

R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005), p. 444.

Guérineau, N.

Haïdar, R.

Handerek, V. A.

L. C. Laycock and V. A. Handerek, “Miniature imaging devices for airborne platforms,” Proc. SPIE 7113, 71130M-1–71130M-9 (2008).

L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).

Haney, M. W.

Howe, J. D.

Ichioka, Y.

Ishida, K.

Kanaev, A. V.

Kidger, M. J.

M. J. Kidger, Fundamental Optical Design (SPIE, 2002).

Kitamura, Y.

Kondou, N.

Kumagai, T.

Laycock, L. C.

L. C. Laycock and V. A. Handerek, “Miniature imaging devices for airborne platforms,” Proc. SPIE 7113, 71130M-1–71130M-9 (2008).

L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).

Leitel, R.

Lhermet, N.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Lohmann, A. W.

Magli, S.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Masaki, Y.

Matthes, A.

Meyer, J.

Miyamoto, M.

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Moullec, J.-B.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Nitta, K.

Papoulis, A.

A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuit Syst. 24, 652–654 (1977).
[CrossRef]

Pitsianis, N.

Portnoy, A.

Prather, D.

Primot, J.

Pshenay-Severin, E.

Refregier, P.

Reibel, Y.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Reichenbach, S. E.

Riemer, O.

R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).

Rommeluére, S.

Rullière, J.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Schreiber, P.

Schulz, T.

Schulz, T. J.

Scribner, D. A.

Shankar, M.

Shi, J.

Shogenji, R.

Silver, A.

Stollberg, K.

Sun, X.

Taboury, J.

Tanida, J.

Te Kolste, R.

Thétas, S.

Tünnermann, A.

Völkel, R.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Weible, K. J.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Willett, R.

Wippermann, F.

A. Brückner, J. Duparré, F. Wippermann, R. Leitel, P. Dannberg, and A. Bräuer, “Ultra-compact close-up microoptical imaging system,” Proc. SPIE 7786, 77860A-1–77860A-8 (2010).

Yamada, K.

Appl. Opt. (16)

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43, 1719–1727 (2004).
[CrossRef]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303–4310 (2004).
[CrossRef]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
[CrossRef]

J. Shi, S. E. Reichenbach, and J. D. Howe, “Small-kernel superresolution methods for microscanning imaging systems,” Appl. Opt. 45, 1203–1214 (2006).
[CrossRef]

K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893–2900 (2006).
[CrossRef]

M. W. Haney, “Performance scaling in flat imagers,” Appl. Opt. 45, 2901–2910 (2006).
[CrossRef]

M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008).
[CrossRef]

K. Choi and T. J. Schulz, “Signal-processing approaches for image-resolution restoration for TOMBO imagery,” Appl. Opt. 47, B104–B116 (2008).
[CrossRef]

A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons, A. Silver, R. Te Kolste, C. Chen, T. Dillon, and D. Prather, “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 48, 2115–2126 (2009).
[CrossRef]

G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluére, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
[CrossRef]

A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989).
[CrossRef]

F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010).
[CrossRef]

F. de la Barrière, G. Druart, N. Guérineau, and J. Taboury, “Design strategies to simplify and miniaturize imaging systems,” Appl. Opt. 50, 943–951 (2011).
[CrossRef]

M. W. Haney, “Comments on “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 50, 1584–1586 (2011).
[CrossRef]

D. J. Brady, “Reply to “Comments on multiple aperture cameras,” Appl. Opt. 50, 1587–1592 (2011).
[CrossRef]

IEEE Trans. Circuit Syst. (1)

A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuit Syst. 24, 652–654 (1977).
[CrossRef]

Microelectron. Eng. (1)

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (5)

A. Brückner, J. Duparré, F. Wippermann, R. Leitel, P. Dannberg, and A. Bräuer, “Ultra-compact close-up microoptical imaging system,” Proc. SPIE 7786, 77860A-1–77860A-8 (2010).

L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).

L. C. Laycock and V. A. Handerek, “Miniature imaging devices for airborne platforms,” Proc. SPIE 7113, 71130M-1–71130M-9 (2008).

R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Other (3)

http://www.suss-microoptics.com .

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005), p. 444.

M. J. Kidger, Fundamental Optical Design (SPIE, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics