Abstract

We demonstrate an all-fiber optical Fabry–Perot interferometer (FPI) strain sensor whose cavity is a microscopic air bubble. The bubble is formed by fusion splicing together two sections of single-mode fibers (SMFs) with cleaved flat tip and arc fusion induced hemispherical tip, respectively. The fabricated interferometers are with bubble diameters of typically 100μm. Strain and temperature sensitivities of fabricated interferometers are studied experimentally; a strain sensitivity of over 4Pm/με and a thermal sensitivity of less than 0.9Pm/°C is obtained.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Udd, ed., Fiber Optic Smart Structures (Wiley, 1995).
  2. W. Huo, “Controlled fabrication system of Fabry–Perot optical fiber sensors,” M. S. thesis (Virginia Polytechnic Institute, 2000).
  3. Y. J. Rao, “Recent progress in fiber-optic extrinsic FP interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
    [CrossRef]
  4. C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
    [CrossRef]
  5. J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
    [CrossRef]
  6. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007).
    [CrossRef]
  7. W.-H. Tsai and C.-J. Lin, “A novel structure for the intrinsic Fabry–Perot fiber-optic temperature sensor,” J. Lightwave Technol. 19, 682–686 (2001).
    [CrossRef]
  8. O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
    [CrossRef]
  9. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006).
    [CrossRef]
  10. V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
    [CrossRef]
  11. E. Cibula and D. Donlagic, “In-line short cavity Fabry–Perot strain sensor for quasi distributed measurement utilizing standard OTDR,” Opt. Express 15, 8719–8730 (2007).
    [CrossRef]
  12. Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry–Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123–14128 (2007).
    [CrossRef]
  13. E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92, 101117–101119 (2008).
    [CrossRef]
  14. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro- Fabry–Perot interferometer,” Opt. Lett. 34, 2441–2443 (2009).
    [CrossRef]
  15. A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005).
  16. K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fibre,” J. Opt. A 8, 782–787 (2006).
    [CrossRef]
  17. E. Li, “Characterization of a fiber lens,” Opt. Lett. 31, 169–171 (2006).
    [CrossRef]
  18. T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283, 3683–3685 (2010).
    [CrossRef]
  19. Y.-J. Rao, D.-W. Duan, Y.-E. Fan, T. Ke, and M. Xu, “High-temperature annealing behaviors of CO2 laser pulse-induced long-period fiber grating in a photonic crystal fiber,” J. Lightwave Technol. 28, 1530–1535 (2010).
    [CrossRef]
  20. A. K. Varshneya, Fundamentals of Inorganic Glasses (Elsevier Science, 1994).
  21. A. D. Yablon, M. F. Yan, and P. Wisk, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
    [CrossRef]

2010 (2)

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283, 3683–3685 (2010).
[CrossRef]

Y.-J. Rao, D.-W. Duan, Y.-E. Fan, T. Ke, and M. Xu, “High-temperature annealing behaviors of CO2 laser pulse-induced long-period fiber grating in a photonic crystal fiber,” J. Lightwave Technol. 28, 1530–1535 (2010).
[CrossRef]

2009 (2)

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro- Fabry–Perot interferometer,” Opt. Lett. 34, 2441–2443 (2009).
[CrossRef]

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

2008 (1)

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92, 101117–101119 (2008).
[CrossRef]

2007 (4)

2006 (4)

E. Li, “Characterization of a fiber lens,” Opt. Lett. 31, 169–171 (2006).
[CrossRef]

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760–7766 (2006).
[CrossRef]

Y. J. Rao, “Recent progress in fiber-optic extrinsic FP interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
[CrossRef]

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fibre,” J. Opt. A 8, 782–787 (2006).
[CrossRef]

2004 (1)

A. D. Yablon, M. F. Yan, and P. Wisk, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

2001 (1)

1995 (1)

J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

1992 (1)

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
[CrossRef]

Aref, S. H.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Atkins, R. A.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
[CrossRef]

Badcock, R. A.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
[CrossRef]

Baptista, J. M.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Berkoff, T. A.

J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Chen, X.

Cheng, G.-H.

Chiang, K. S.

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283, 3683–3685 (2010).
[CrossRef]

Cibula, E.

Coviello, G.

Deng, M.

Ding, X.

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92, 101117–101119 (2008).
[CrossRef]

Donlagic, D.

Duan, D. W.

Duan, D.-W.

Fan, K.-C.

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fibre,” J. Opt. A 8, 782–787 (2006).
[CrossRef]

Fan, Y.-E.

Farahi, F.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Fernando, G. F.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
[CrossRef]

Finazzi, V.

Frazao, O.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Gibler, W. N.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
[CrossRef]

Hsu, H.-Y.

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fibre,” J. Opt. A 8, 782–787 (2006).
[CrossRef]

Huang, Z.

Hung, P.-Y.

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fibre,” J. Opt. A 8, 782–787 (2006).
[CrossRef]

Huo, W.

W. Huo, “Controlled fabrication system of Fabry–Perot optical fiber sensors,” M. S. thesis (Virginia Polytechnic Institute, 2000).

Jones, R. T.

J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Ke, T.

Y.-J. Rao, D.-W. Duan, Y.-E. Fan, T. Ke, and M. Xu, “High-temperature annealing behaviors of CO2 laser pulse-induced long-period fiber grating in a photonic crystal fiber,” J. Lightwave Technol. 28, 1530–1535 (2010).
[CrossRef]

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283, 3683–3685 (2010).
[CrossRef]

Kobelke, J.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Latifi, H.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Lee, C. E.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
[CrossRef]

Li, E.

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92, 101117–101119 (2008).
[CrossRef]

E. Li, “Characterization of a fiber lens,” Opt. Lett. 31, 169–171 (2006).
[CrossRef]

Lin, C.-J.

Machavaram, V. R.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
[CrossRef]

Peng, G. D.

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92, 101117–101119 (2008).
[CrossRef]

Pruneri, V.

Rao, Y. J.

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283, 3683–3685 (2010).
[CrossRef]

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32, 2662–2664 (2007).
[CrossRef]

Y. J. Rao, “Recent progress in fiber-optic extrinsic FP interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
[CrossRef]

Rao, Y.-J.

Santos, J. L.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Schuster, K.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Shen, F.

Sirkis, J.

J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

Taylor, H. F.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
[CrossRef]

Tsai, W.-H.

Varshneya, A. K.

A. K. Varshneya, Fundamentals of Inorganic Glasses (Elsevier Science, 1994).

Villatoro, J.

Wang, A.

Wang, W.

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fibre,” J. Opt. A 8, 782–787 (2006).
[CrossRef]

Wang, Z.

Wisk, P.

A. D. Yablon, M. F. Yan, and P. Wisk, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Xu, M.

Yablon, A. D.

A. D. Yablon, M. F. Yan, and P. Wisk, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005).

Yan, M. F.

A. D. Yablon, M. F. Yan, and P. Wisk, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Yang, X. C.

Yang, X.-C.

Zhu, T.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. D. Yablon, M. F. Yan, and P. Wisk, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92, 101117–101119 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

J. Lightwave Technol. (4)

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
[CrossRef]

J. Sirkis, T. A. Berkoff, and R. T. Jones, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995).
[CrossRef]

W.-H. Tsai and C.-J. Lin, “A novel structure for the intrinsic Fabry–Perot fiber-optic temperature sensor,” J. Lightwave Technol. 19, 682–686 (2001).
[CrossRef]

Y.-J. Rao, D.-W. Duan, Y.-E. Fan, T. Ke, and M. Xu, “High-temperature annealing behaviors of CO2 laser pulse-induced long-period fiber grating in a photonic crystal fiber,” J. Lightwave Technol. 28, 1530–1535 (2010).
[CrossRef]

J. Opt. A (1)

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fibre,” J. Opt. A 8, 782–787 (2006).
[CrossRef]

Opt. Commun. (1)

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283, 3683–3685 (2010).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic FP interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
[CrossRef]

Opt. Lett. (3)

Sens. Actuators A (1)

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
[CrossRef]

Other (4)

A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005).

E. Udd, ed., Fiber Optic Smart Structures (Wiley, 1995).

W. Huo, “Controlled fabrication system of Fabry–Perot optical fiber sensors,” M. S. thesis (Virginia Polytechnic Institute, 2000).

A. K. Varshneya, Fundamentals of Inorganic Glasses (Elsevier Science, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of the fabrication procedure of microbubble-based FPI strain sensor.

Fig. 2.
Fig. 2.

Schematic of the sensor system (top) with highlighting detail structure of the proposed sensor head. The inset in the middle is the microscope photograph of a fabricated microbubble sensor.

Fig. 3.
Fig. 3.

Reflection spectrums of two fabricated FPI sensors.

Fig. 4.
Fig. 4.

Shift of the reflective spectrum pattern as a function of strain observed in two 91μm FPI at 1547±3nm. The inset is one of the interference dips shifts as the strain increases.

Fig. 5.
Fig. 5.

Shift of the reflective spectrum pattern as a function of temperature observed in two 91μm FPIs at 1544±1nm. The insets are the shifts of the interference dips at 100 °C (solid curve) and 1000 °C (dashed curve) of the two samples.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I=I1+I2+2I1I2cos(φ).

Metrics