Abstract

A simple approach to generate two bands of tunable microwave signal is proposed and demonstrated. In this scheme, two single-mode fibers with optimized Brillouin frequency shift spacing have been chosen as the scattering medium in two cascaded ring cavities. Two bands of tunable microwave signal from 390 to 453 MHz and 10.863 to 11.076 GHz can be obtained through adjusting the temperature of the fiber and the pump wavelength. The tunable frequency range can be further expanded by using a temperature controller with a wider adjustment range. The generated microwave signal exhibits high stability on frequency.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  2. V. T. Company, M. F. Alonso, and J. Lancis, “Millimeter-wave and microwave signal generation by low-bandwidth electro-optic phase modulation,” Opt. Express 14, 9617–9626(2006).
    [CrossRef]
  3. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol. 53, 3090–3097 (2005).
    [CrossRef]
  4. C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of base band and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18, 2481–2483 (2006).
    [CrossRef]
  5. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express 16, 10786–10802 (2008).
    [CrossRef]
  6. J. Genest, M. Chamberland, P. Tremblay, and M. Tetu, “Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 33, 989–998 (1997).
    [CrossRef]
  7. M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).
    [CrossRef]
  8. D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Technol. 43, 2270–2276 (1995).
    [CrossRef]
  9. S. Gao, Y. Gao, and S. He, “Photonic generation of tunable multi-frequency microwave source,” Electron. Lett. 46, 247–248 (2010).
    [CrossRef]
  10. H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector,” Opt. Commun. 282, 4114–4118 (2009).
    [CrossRef]
  11. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
    [CrossRef]
  12. Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22, 568–570 (2010).
    [CrossRef]
  13. T. Schneider, M. Junker, and K. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B 23, 1012–1019 (2006).
    [CrossRef]
  14. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
    [CrossRef]
  15. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108(1989).
    [CrossRef]
  16. T. Kurashima and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29, 2219–2222 (1990).
    [CrossRef]
  17. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  18. L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. K. Su, L. F. Leng, and Y. X. Xia, “A highly stable low-RIN hybrid Brillouin/erbium amplified laser source,” IEEE Photon. Technol. Lett. 18, 1028–1030 (2006).
    [CrossRef]

2010

S. Gao, Y. Gao, and S. He, “Photonic generation of tunable multi-frequency microwave source,” Electron. Lett. 46, 247–248 (2010).
[CrossRef]

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22, 568–570 (2010).
[CrossRef]

2009

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector,” Opt. Commun. 282, 4114–4118 (2009).
[CrossRef]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

2008

2006

T. Schneider, M. Junker, and K. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B 23, 1012–1019 (2006).
[CrossRef]

V. T. Company, M. F. Alonso, and J. Lancis, “Millimeter-wave and microwave signal generation by low-bandwidth electro-optic phase modulation,” Opt. Express 14, 9617–9626(2006).
[CrossRef]

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. K. Su, L. F. Leng, and Y. X. Xia, “A highly stable low-RIN hybrid Brillouin/erbium amplified laser source,” IEEE Photon. Technol. Lett. 18, 1028–1030 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of base band and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18, 2481–2483 (2006).
[CrossRef]

2005

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol. 53, 3090–3097 (2005).
[CrossRef]

2004

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).
[CrossRef]

1997

J. Genest, M. Chamberland, P. Tremblay, and M. Tetu, “Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 33, 989–998 (1997).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

1995

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Technol. 43, 2270–2276 (1995).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

1990

1989

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108(1989).
[CrossRef]

Alonso, M. F.

Belisle, C.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol. 53, 3090–3097 (2005).
[CrossRef]

Blanc, S.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).
[CrossRef]

Bretenaker, F.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).
[CrossRef]

Brisset, J.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).
[CrossRef]

Brunel, M.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).
[CrossRef]

Chamberland, M.

J. Genest, M. Chamberland, P. Tremblay, and M. Tetu, “Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 33, 989–998 (1997).
[CrossRef]

Chen, J.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of base band and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18, 2481–2483 (2006).
[CrossRef]

Chen, X.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Chi, S.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of base band and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18, 2481–2483 (2006).
[CrossRef]

Chiou, B. S.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of base band and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18, 2481–2483 (2006).
[CrossRef]

Company, V. T.

Crozatier, V.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).
[CrossRef]

Dai, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Davies, P. A.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Technol. 43, 2270–2276 (1995).
[CrossRef]

Gao, S.

S. Gao, Y. Gao, and S. He, “Photonic generation of tunable multi-frequency microwave source,” Electron. Lett. 46, 247–248 (2010).
[CrossRef]

Gao, Y.

S. Gao, Y. Gao, and S. He, “Photonic generation of tunable multi-frequency microwave source,” Electron. Lett. 46, 247–248 (2010).
[CrossRef]

Genest, J.

J. Genest, M. Chamberland, P. Tremblay, and M. Tetu, “Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 33, 989–998 (1997).
[CrossRef]

He, S.

S. Gao, Y. Gao, and S. He, “Photonic generation of tunable multi-frequency microwave source,” Electron. Lett. 46, 247–248 (2010).
[CrossRef]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108(1989).
[CrossRef]

Hraimel, B.

Hu, P. G.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. K. Su, L. F. Leng, and Y. X. Xia, “A highly stable low-RIN hybrid Brillouin/erbium amplified laser source,” IEEE Photon. Technol. Lett. 18, 1028–1030 (2006).
[CrossRef]

Hu, W. S.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. K. Su, L. F. Leng, and Y. X. Xia, “A highly stable low-RIN hybrid Brillouin/erbium amplified laser source,” IEEE Photon. Technol. Lett. 18, 1028–1030 (2006).
[CrossRef]

Jia, C.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector,” Opt. Commun. 282, 4114–4118 (2009).
[CrossRef]

Junker, M.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

T. Kurashima and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29, 2219–2222 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108(1989).
[CrossRef]

Lancis, J.

Lauterbach, K.

Leng, L. F.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. K. Su, L. F. Leng, and Y. X. Xia, “A highly stable low-RIN hybrid Brillouin/erbium amplified laser source,” IEEE Photon. Technol. Lett. 18, 1028–1030 (2006).
[CrossRef]

Lima, C. R.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Technol. 43, 2270–2276 (1995).
[CrossRef]

Lin, C. T.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of base band and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18, 2481–2483 (2006).
[CrossRef]

Liu, B.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector,” Opt. Commun. 282, 4114–4118 (2009).
[CrossRef]

Liu, J.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22, 568–570 (2010).
[CrossRef]

Luo, J.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector,” Opt. Commun. 282, 4114–4118 (2009).
[CrossRef]

Ma, X.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector,” Opt. Commun. 282, 4114–4118 (2009).
[CrossRef]

Merlet, T.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).
[CrossRef]

Mohamed, M.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Paquet, S.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol. 53, 3090–3097 (2005).
[CrossRef]

Peng, C. F.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of base band and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18, 2481–2483 (2006).
[CrossRef]

Peng, P. C.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of base band and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18, 2481–2483 (2006).
[CrossRef]

Peng, W. R.

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of base band and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18, 2481–2483 (2006).
[CrossRef]

Poezevara, A.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).
[CrossRef]

Qi, G.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol. 53, 3090–3097 (2005).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Schneider, T.

Seregelyi, J.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol. 53, 3090–3097 (2005).
[CrossRef]

Shen, Q.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22, 568–570 (2010).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Su, Y. K.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. K. Su, L. F. Leng, and Y. X. Xia, “A highly stable low-RIN hybrid Brillouin/erbium amplified laser source,” IEEE Photon. Technol. Lett. 18, 1028–1030 (2006).
[CrossRef]

Sun, J.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector,” Opt. Commun. 282, 4114–4118 (2009).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

T. Kurashima and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29, 2219–2222 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108(1989).
[CrossRef]

Tetu, M.

J. Genest, M. Chamberland, P. Tremblay, and M. Tetu, “Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 33, 989–998 (1997).
[CrossRef]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Tremblay, P.

J. Genest, M. Chamberland, P. Tremblay, and M. Tetu, “Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 33, 989–998 (1997).
[CrossRef]

Wake, D.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Technol. 43, 2270–2276 (1995).
[CrossRef]

Wang, S.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector,” Opt. Commun. 282, 4114–4118 (2009).
[CrossRef]

Wang, Y.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22, 568–570 (2010).
[CrossRef]

Wu, K.

Wu, Z.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22, 568–570 (2010).
[CrossRef]

Xia, Y. X.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. K. Su, L. F. Leng, and Y. X. Xia, “A highly stable low-RIN hybrid Brillouin/erbium amplified laser source,” IEEE Photon. Technol. Lett. 18, 1028–1030 (2006).
[CrossRef]

Xie, S.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Yao, J.

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol. 53, 3090–3097 (2005).
[CrossRef]

Yi, L. L.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. K. Su, L. F. Leng, and Y. X. Xia, “A highly stable low-RIN hybrid Brillouin/erbium amplified laser source,” IEEE Photon. Technol. Lett. 18, 1028–1030 (2006).
[CrossRef]

Yuan, W.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22, 568–570 (2010).
[CrossRef]

Zhan, L.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22, 568–570 (2010).
[CrossRef]

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. K. Su, L. F. Leng, and Y. X. Xia, “A highly stable low-RIN hybrid Brillouin/erbium amplified laser source,” IEEE Photon. Technol. Lett. 18, 1028–1030 (2006).
[CrossRef]

Zhang, H.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector,” Opt. Commun. 282, 4114–4118 (2009).
[CrossRef]

Zhang, X.

Zhang, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Appl. Opt.

Electron. Lett.

S. Gao, Y. Gao, and S. He, “Photonic generation of tunable multi-frequency microwave source,” Electron. Lett. 46, 247–248 (2010).
[CrossRef]

IEEE J. Quantum Electron.

J. Genest, M. Chamberland, P. Tremblay, and M. Tetu, “Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 33, 989–998 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16, 870–872 (2004).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22, 568–570 (2010).
[CrossRef]

C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of base band and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18, 2481–2483 (2006).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108(1989).
[CrossRef]

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. K. Su, L. F. Leng, and Y. X. Xia, “A highly stable low-RIN hybrid Brillouin/erbium amplified laser source,” IEEE Photon. Technol. Lett. 18, 1028–1030 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Technol.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol. 53, 3090–3097 (2005).
[CrossRef]

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Technol. 43, 2270–2276 (1995).
[CrossRef]

J. Lightwave Technol.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector,” Opt. Commun. 282, 4114–4118 (2009).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup to generate the tunable microwave signal using two cascaded cavities with temperature controller: PC, polarization controller; TLS, tunable laser source; EDFA, erbium-doped fiber amplifier; ISO, isolator; SMF, single-mode fiber; VOA, variable optical attenuator; TC, temperature controller; PD, photodetector; OC, optical circulator; ESA, electrical spectrum analyzer.

Fig. 2.
Fig. 2.

Microwave signal frequency under different temperatures.

Fig. 3.
Fig. 3.

Microwave signal frequency under different pump wavelengths.

Fig. 4.
Fig. 4.

Stability of the microwave signal: (a) microwave signal frequency in lower frequency band at time intervals of 20 min and (b) microwave signal frequency under different wavelengths.

Fig. 5.
Fig. 5.

Microwave signal frequency in higher frequency band at time intervals of 20 min.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

νB=2nVaλp,
νB(T,Δε)=νB(Tr,ε)+CT(TTr)+CεΔε,
νB1(T1)=νB1(Tr)+CT1(T1Tr),
νB2(T2)=νB2(Tr)+CT2(T2Tr),
fRF=|νB1(T1)νB2(T2)|.
fRF=|νB2(Tr)νB1(Tr)+CT2(T2Tr)|.

Metrics