Abstract

A fluorine-doped trench-assisted structure is proposed to improve the nonlinearity of photonic crystal fibers (PCFs). Three all-solid highly nonlinear PCFs with low dispersion slope and low confinement loss are designed. They exhibit all normal dispersion, two zero dispersion wavelengths (ZDWs) and one ZDW just at 1.55 μm, respectively. The lowest dispersion slope is 5.12×104ps/(km·nm2), which is 2 orders of magnitude lower than that of conventional highly nonlinear fibers. A nonlinear coefficient of 31.5W1·km1 and low loss of 9.62×105dB/km at 1.55 μm has been achieved for this PCF.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Nowak, Y. H. Kao, T. J. Xia, M. N. Islam, and D. Nolan, “Low power high-efficiency wavelength conversion based on modulational instability in high-nonlinearity fiber,” Opt. Lett. 23, 936–938 (1998).
    [CrossRef]
  2. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
    [CrossRef]
  3. J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for supercontinuum generation and femtosecond pulse compression,” J. Lightwave Technol. 23, 3591–3596 (2005).
    [CrossRef]
  4. M. Onishi, “New nonlinear fibers with application to amplifiers,” in Proceedings of the Optical Fiber Communincation Conference (IEEE, 2004), paper TuC3.
  5. W. H. Reeves, J. C. Knight, and P. St. J. Russel, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609–613 (2002).
  6. Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007).
    [CrossRef]
  7. Y. P. Yatsenko, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber,” Opt. Lett. 34, 2581–2583 (2009).
    [CrossRef]
  8. B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Mélin, and A. Kudlinski, “Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B 28, 1152–1160 (2011).
    [CrossRef]
  9. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.
  10. A. Ferrando, “Design a photonic crystal fibre with flattened chromatic dispersion,” Electron. Lett. 35, 325–327 (1999).
    [CrossRef]
  11. K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11, 1503–1509 (2003).
    [CrossRef]
  12. L. Dong, L. Fu, and H. A. McKay, “All glass micro-structured optical fibres,” in Proceedings of the 35th European Conference on Optical Communication (ECOC) (IEEE, 2009), paper 2.1.3.
  13. J. W. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984).
    [CrossRef]
  14. J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Appl. Opt. 22, 3102–3104 (1983).
    [CrossRef]
  15. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279–2281 (1995).
    [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (2006).
  17. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-band,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (2009), paper OTuC4.
  18. B. Kuhlmey, G. Renversez, and D. Maystre, “Chromatic dispersion and losses of microstructured optical fibers,” Appl. Opt. 42, 634–639 (2003).
    [CrossRef]
  19. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  20. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
    [CrossRef]
  21. K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFH5.
  22. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
    [CrossRef]
  23. F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
    [CrossRef]
  24. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method,” J. Lightwave Technol. 20, 1433–1442 (2002).
    [CrossRef]
  25. K. Reichenbach and C. Xu, “The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers,” Opt. Express 13, 2799–2807 (2005).
    [CrossRef]
  26. K. Reichenbach and C. Xu, “The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers,” Opt. Express 13, 2799–2807 (2005).
    [CrossRef]

2011 (2)

2010 (1)

2009 (2)

F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
[CrossRef]

Y. P. Yatsenko, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber,” Opt. Lett. 34, 2581–2583 (2009).
[CrossRef]

2007 (1)

Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007).
[CrossRef]

2005 (3)

2003 (2)

2002 (2)

1999 (1)

A. Ferrando, “Design a photonic crystal fibre with flattened chromatic dispersion,” Electron. Lett. 35, 325–327 (1999).
[CrossRef]

1998 (1)

1995 (1)

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1992 (1)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[CrossRef]

1984 (1)

1983 (1)

Abdur Razzak, S. M.

F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (2006).

Barviau, B.

Begum, F.

F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Bjarklev, A.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFH5.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.

Broeng, J.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.

Chaudhari, C.

C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-band,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (2009), paper OTuC4.

Chow, K. K.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFH5.

Cucinotta, A.

Dianov, E. M.

Dong, L.

L. Dong, L. Fu, and H. A. McKay, “All glass micro-structured optical fibres,” in Proceedings of the 35th European Conference on Optical Communication (ECOC) (IEEE, 2009), paper 2.1.3.

Ferrando, A.

A. Ferrando, “Design a photonic crystal fibre with flattened chromatic dispersion,” Electron. Lett. 35, 325–327 (1999).
[CrossRef]

Fleming, J. W.

Fu, L.

L. Dong, L. Fu, and H. A. McKay, “All glass micro-structured optical fibres,” in Proceedings of the 35th European Conference on Optical Communication (ECOC) (IEEE, 2009), paper 2.1.3.

Gopinath, J. T.

Hai, N. H.

F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
[CrossRef]

Hansen, K. P.

K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11, 1503–1509 (2003).
[CrossRef]

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.

Hasegawa, T.

Heidt, A. M.

Hooper, L. E.

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[CrossRef]

Ippen, E. P.

Islam, M. N.

Jacobsen, C.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.

Jensen, J. R.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.

Kaijage, S.

F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
[CrossRef]

Kao, Y. H.

Kato, T.

Kinjo, T.

F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
[CrossRef]

Knight, J. C.

Kosolapov, A. F.

Kudlinski, A.

Kuhlmey, B.

Levchenko, A. E.

Lin, C.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFH5.

Maystre, D.

McKay, H. A.

L. Dong, L. Fu, and H. A. McKay, “All glass micro-structured optical fibres,” in Proceedings of the 35th European Conference on Optical Communication (ECOC) (IEEE, 2009), paper 2.1.3.

Mélin, G.

Miyagi, K.

F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
[CrossRef]

Mosley, P. J.

Muir, A. C.

Mussot, A.

Nagashima, T.

Namihira, Y.

F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
[CrossRef]

Nishimura, M.

Nolan, D.

Nowak, G. A.

Ohishi, Y.

C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-band,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (2009), paper OTuC4.

Onishi, M.

M. Onishi, “New nonlinear fibers with application to amplifiers,” in Proceedings of the Optical Fiber Communincation Conference (IEEE, 2004), paper TuC3.

Petersson, A.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.

Pryamikov, A. D.

Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007).
[CrossRef]

Quiquempois, Y.

Reeves, W. H.

Reichenbach, K.

Renversez, G.

Russel, P. St. J.

Selleri, S.

Semjonov, S. L.

Shen, H. M.

Shu, C.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFH5.

Simonsen, H. R.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.

Skovgaard, P. M. W.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.

Sotobayashi, H.

Suetsugu, Y.

Sugimoto, N.

Suzuki, T.

C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-band,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (2009), paper OTuC4.

Takushima, Y.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFH5.

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[CrossRef]

Vanvincq, O.

Vincetti, L.

Wadsworth, W. J.

Wood, D. L.

Xia, T. J.

Xu, C.

Yatsenko, Y. P.

Y. P. Yatsenko, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber,” Opt. Lett. 34, 2581–2583 (2009).
[CrossRef]

Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007).
[CrossRef]

Zoboli, M.

Zou, N.

F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

A. Ferrando, “Design a photonic crystal fibre with flattened chromatic dispersion,” Electron. Lett. 35, 325–327 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A (1)

Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

F. Begum, Y. Namihira, S. M. Abdur Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion,” Opt. Commun. 282, 1416–1421 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Other (6)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (2006).

C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-band,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (2009), paper OTuC4.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFH5.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FA9.

M. Onishi, “New nonlinear fibers with application to amplifiers,” in Proceedings of the Optical Fiber Communincation Conference (IEEE, 2004), paper TuC3.

L. Dong, L. Fu, and H. A. McKay, “All glass micro-structured optical fibres,” in Proceedings of the 35th European Conference on Optical Communication (ECOC) (IEEE, 2009), paper 2.1.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Cross section of the all-solid PCF. (b) Refractive index profile of the concentric core.

Fig. 2.
Fig. 2.

Influence of Ge-doped areas on dispersion, where Λ=4μm and d=3.6μm.

Fig. 3.
Fig. 3.

Influence of Ge-doped areas on nonlinear coefficient γ, where Λ=4μm and d=3.6μm.

Fig. 4.
Fig. 4.

(a) Influence of Ge-doped areas on MFD for a fixed wavelength, where D2=4μm. (b) Influence of D1 and D2 on MFD.

Fig. 5.
Fig. 5.

Influence of rod to rod pitch Λ on (a) dispersion and (b) nonlinear coefficient γ, where d=3.6μm, D1=3.2μm, D2=8μm.

Fig. 6.
Fig. 6.

Influence of diameter of rods d on (a) dispersion, and (b) nonlinear coefficient γ, where d=3.6μm, D1=3.2μm, D2=8μm.

Fig. 7.
Fig. 7.

(a) Dispersion profile and (b) nonlinear coefficient of designed PCFs with three rings.

Fig. 8.
Fig. 8.

Dispersion behavior of PCF2 with a variation of ±5% for all parameters simultaneously.

Tables (1)

Tables Icon

Table 1. Parameters of the Designed PCFs with Three Rings

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n21=i=13[SAi+X(GAiSAi)]λ2λ2[Sli+X(GliSli)]2,
n2(GeO2SiO2)(×1020m2/w)=2.76+0.0974X(mol.%),
n2(FSiO2)(×1020m2/w)=2.76+1.03Y(wt.%),
γ=2πλn2(x,y)|F(x,y)|4dxdy(|F(x,y)|2dxdy)2,
D=λcd2Re(neff)dλ2,
Lc(dB/m)=20ln(10)2πλIm[neff]×106

Metrics