Abstract

A fluorine-doped trench-assisted structure is proposed to improve the nonlinearity of photonic crystal fibers (PCFs). Three all-solid highly nonlinear PCFs with low dispersion slope and low confinement loss are designed. They exhibit all normal dispersion, two zero dispersion wavelengths (ZDWs) and one ZDW just at 1.55 μm, respectively. The lowest dispersion slope is 5.12×104ps/(km·nm2), which is 2 orders of magnitude lower than that of conventional highly nonlinear fibers. A nonlinear coefficient of 31.5W1·km1 and low loss of 9.62×105dB/km at 1.55 μm has been achieved for this PCF.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription