Abstract

The results for laser-induced breakdown spectroscopy (LIBS) measurement of thin Cu films (1 μm) on soda-lime glass (SLG) substrates with and without a supporting thin Mo layer (1 μm) are reported. The ablation was carried out using a nanosecond Q-switched Nd:YAG laser (λ=1064nm, τ=4ns, spot diameter=50μm, top-hat profile) in the laser fluence range of 19.1665.97J/cm2. It was found that, under the same laser irradiance conditions, the depth and morphology of ablation craters produced with and without the Mo layer were completely different. The electron number densities of the plasma from the two samples calculated from the measured LIBS spectra differed by a factor of 4 as 4.1×1017cm3 (Cu/Mo/SLG) and 17.7×1017cm3 (Cu/SLG), which was attributed to the matrix effects resulting from ionization of Na atoms diffused into the Mo layer. It is demonstrated that a nanosecond-laser-based LIBS is applicable for the characterization and composition analysis of thin film layers of a few micrometer thickness on glass substrates, especially for the measurement of Na contents of each layer.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
    [CrossRef]
  2. R. Chang and D. Perng, “Near-infrared photodetector with CuIn1−xAlxSe2 thin film,” Appl. Phys. Lett. 99, 081103 (2011).
    [CrossRef]
  3. C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device?” Appl. Phys. Lett. 85, 2625–2627 (2004).
    [CrossRef]
  4. J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, “Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices,” Appl. Phys. Lett. 80, 4540–4542, (2002).
    [CrossRef]
  5. Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011).
    [CrossRef]
  6. K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
    [CrossRef]
  7. M. Zellner, R. Birkmire, E. Eser, W. Shafarman, and J. Chen, “Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells,” Prog. Photovolt. Res. Appl. 11, 543–548 (2003).
    [CrossRef]
  8. R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
    [CrossRef]
  9. Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, and H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6, 581–585 (2011).
    [CrossRef]
  10. T. Owens, S. Mao, E. Canfield, C. Grigoropoulos, X. Mao, and R. Russo, “Ultrafast thin-film laser-induced breakdown spectroscopy of doped oxides,” Appl. Opt. 49, C67–C69(2010).
    [CrossRef]
  11. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).
  12. L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
    [CrossRef]
  13. M. P. Mateo, J. M. Vadillo, and J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
    [CrossRef]
  14. A. Bol’shakov, J. Yoo, C. Liu, J. Plumer, and R. Russo, “Laser-induced breakdown spectroscopy in industrial and security applications,” Appl. Opt. 49, C132–C142 (2010).
    [CrossRef]
  15. R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius’ J. Anal. Chem. 355, 16–20 (1996).
    [CrossRef]
  16. M. Hanif, M. Salik, and M. A. Baig, “Quantitative studies of copper plasma using laser induced breakdown spectroscopy,” Opt. Lasers Eng. 49, 1456–1461 (2011).
    [CrossRef]
  17. V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, “An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectochim. Acta B 56, 1011–1025 (2001).
    [CrossRef]
  18. A. H. Galmed and M. A. Harith, “Temporal follow up of the LTE conditions in aluminum laser induced plasma at different laser energies” Appl. Phys. B 91, 651–660 (2008).
    [CrossRef]
  19. N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–924 (2002).
    [CrossRef]
  20. http://physics.nist.gov/cuu/Constants/ .
  21. Y. Ralchenko and A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3 .
  22. M. Baudelet, C. C. C. Willis, L. Shah, and M. Richardson, “Laser-induced breakdown spectroscopy of copper with a 2 μm thulium fiber laser,” Opt. Express 18, 7905–7910 (2010).
    [CrossRef]
  23. A. G. Shenstone, “The first spectrum of copper (Cu I),” Phil. Trans. R. Soc. A 241, 297–322 (1948).
    [CrossRef]
  24. A. Kono and S. Hattori, “Lifetimes and transition probabilities in Cu II,” J. Opt. Soc. Am. 72, 601–605 (1982).
    [CrossRef]
  25. P. K. Diwakar, P. B. Jackson, and D. W. Hah, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectochim. Acta B 62, 1466–1474 (2007).
    [CrossRef]

2011 (5)

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
[CrossRef]

R. Chang and D. Perng, “Near-infrared photodetector with CuIn1−xAlxSe2 thin film,” Appl. Phys. Lett. 99, 081103 (2011).
[CrossRef]

Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011).
[CrossRef]

Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, and H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6, 581–585 (2011).
[CrossRef]

M. Hanif, M. Salik, and M. A. Baig, “Quantitative studies of copper plasma using laser induced breakdown spectroscopy,” Opt. Lasers Eng. 49, 1456–1461 (2011).
[CrossRef]

2010 (3)

2009 (1)

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

2008 (1)

A. H. Galmed and M. A. Harith, “Temporal follow up of the LTE conditions in aluminum laser induced plasma at different laser energies” Appl. Phys. B 91, 651–660 (2008).
[CrossRef]

2007 (1)

P. K. Diwakar, P. B. Jackson, and D. W. Hah, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectochim. Acta B 62, 1466–1474 (2007).
[CrossRef]

2004 (1)

C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device?” Appl. Phys. Lett. 85, 2625–2627 (2004).
[CrossRef]

2003 (2)

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

M. Zellner, R. Birkmire, E. Eser, W. Shafarman, and J. Chen, “Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells,” Prog. Photovolt. Res. Appl. 11, 543–548 (2003).
[CrossRef]

2002 (2)

J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, “Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices,” Appl. Phys. Lett. 80, 4540–4542, (2002).
[CrossRef]

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–924 (2002).
[CrossRef]

2001 (3)

L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

M. P. Mateo, J. M. Vadillo, and J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, “An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectochim. Acta B 56, 1011–1025 (2001).
[CrossRef]

1996 (1)

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius’ J. Anal. Chem. 355, 16–20 (1996).
[CrossRef]

1982 (1)

1948 (1)

A. G. Shenstone, “The first spectrum of copper (Cu I),” Phil. Trans. R. Soc. A 241, 297–322 (1948).
[CrossRef]

AbuShama, J. A.

C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device?” Appl. Phys. Lett. 85, 2625–2627 (2004).
[CrossRef]

Al-Jassim, M. M.

C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device?” Appl. Phys. Lett. 85, 2625–2627 (2004).
[CrossRef]

Baba, T.

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Baig, M. A.

M. Hanif, M. Salik, and M. A. Baig, “Quantitative studies of copper plasma using laser induced breakdown spectroscopy,” Opt. Lasers Eng. 49, 1456–1461 (2011).
[CrossRef]

Baudelet, M.

Birkmire, R.

M. Zellner, R. Birkmire, E. Eser, W. Shafarman, and J. Chen, “Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells,” Prog. Photovolt. Res. Appl. 11, 543–548 (2003).
[CrossRef]

Bol’shakov, A.

Cabalín, L. M.

L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

Caballero, R.

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

Cancela, M.

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

Canfield, E.

Chang, R.

R. Chang and D. Perng, “Near-infrared photodetector with CuIn1−xAlxSe2 thin film,” Appl. Phys. Lett. 99, 081103 (2011).
[CrossRef]

Chen, J.

M. Zellner, R. Birkmire, E. Eser, W. Shafarman, and J. Chen, “Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells,” Prog. Photovolt. Res. Appl. 11, 543–548 (2003).
[CrossRef]

Cohen, J. D.

J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, “Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices,” Appl. Phys. Lett. 80, 4540–4542, (2002).
[CrossRef]

Detalle, V.

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, “An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectochim. Acta B 56, 1011–1025 (2001).
[CrossRef]

Diwakar, P. K.

P. K. Diwakar, P. B. Jackson, and D. W. Hah, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectochim. Acta B 62, 1466–1474 (2007).
[CrossRef]

Eicke, A.

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

Eisenbarth, T.

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

Eser, E.

M. Zellner, R. Birkmire, E. Eser, W. Shafarman, and J. Chen, “Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells,” Prog. Photovolt. Res. Appl. 11, 543–548 (2003).
[CrossRef]

Fons, P.

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Fuhr, J. R.

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–924 (2002).
[CrossRef]

Galmed, A. H.

A. H. Galmed and M. A. Harith, “Temporal follow up of the LTE conditions in aluminum laser induced plasma at different laser energies” Appl. Phys. B 91, 651–660 (2008).
[CrossRef]

Grigoropoulos, C.

Hah, D. W.

P. K. Diwakar, P. B. Jackson, and D. W. Hah, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectochim. Acta B 62, 1466–1474 (2007).
[CrossRef]

Hanif, M.

M. Hanif, M. Salik, and M. A. Baig, “Quantitative studies of copper plasma using laser induced breakdown spectroscopy,” Opt. Lasers Eng. 49, 1456–1461 (2011).
[CrossRef]

Hariskos, D.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
[CrossRef]

Harith, M. A.

A. H. Galmed and M. A. Harith, “Temporal follow up of the LTE conditions in aluminum laser induced plasma at different laser energies” Appl. Phys. B 91, 651–660 (2008).
[CrossRef]

Hattori, S.

Heath, J. T.

J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, “Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices,” Appl. Phys. Lett. 80, 4540–4542, (2002).
[CrossRef]

Héon, R.

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, “An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectochim. Acta B 56, 1011–1025 (2001).
[CrossRef]

Hesse, R.

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

Hölscher, H.

Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011).
[CrossRef]

Jackson, P.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
[CrossRef]

Jackson, P. B.

P. K. Diwakar, P. B. Jackson, and D. W. Hah, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectochim. Acta B 62, 1466–1474 (2007).
[CrossRef]

Jeong, Y.

Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, and H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6, 581–585 (2011).
[CrossRef]

Jiang, C. S.

C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device?” Appl. Phys. Lett. 85, 2625–2627 (2004).
[CrossRef]

Jung, S. C.

Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, and H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6, 581–585 (2011).
[CrossRef]

Kaufmann, C.

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

Kim, C. W.

Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, and H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6, 581–585 (2011).
[CrossRef]

Kim, J. I.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius’ J. Anal. Chem. 355, 16–20 (1996).
[CrossRef]

Kimura, Y.

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Kiowski, O.

Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011).
[CrossRef]

Klenk, R.

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

Knopp, R.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius’ J. Anal. Chem. 355, 16–20 (1996).
[CrossRef]

Kojima, T.

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Konjevic, N.

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–924 (2002).
[CrossRef]

Kono, A.

Kramida, A. E.

Y. Ralchenko and A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3 .

Laserna, J. J.

L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

M. P. Mateo, J. M. Vadillo, and J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
[CrossRef]

Lee, J.

Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, and H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6, 581–585 (2011).
[CrossRef]

Lemmer, U.

Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011).
[CrossRef]

Lesage, A.

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–924 (2002).
[CrossRef]

Liao, D. X.

J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, “Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices,” Appl. Phys. Lett. 80, 4540–4542, (2002).
[CrossRef]

Liu, C.

Lotter, E.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
[CrossRef]

Mao, S.

Mao, X.

Mateo, M. P.

M. P. Mateo, J. M. Vadillo, and J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
[CrossRef]

Matsubara, K.

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Menner, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
[CrossRef]

Miziolek, A. W.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

Moutinho, H. R.

C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device?” Appl. Phys. Lett. 85, 2625–2627 (2004).
[CrossRef]

Nakanishi, H.

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Niki, S.

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Noufi, R.

C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device?” Appl. Phys. Lett. 85, 2625–2627 (2004).
[CrossRef]

Owens, T.

Paetel, S.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
[CrossRef]

Palleschi, V.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

Park, D. W.

Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, and H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6, 581–585 (2011).
[CrossRef]

Perng, D.

R. Chang and D. Perng, “Near-infrared photodetector with CuIn1−xAlxSe2 thin film,” Appl. Phys. Lett. 99, 081103 (2011).
[CrossRef]

Plumer, J.

Powalla, M.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
[CrossRef]

Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011).
[CrossRef]

Ralchenko, Y.

Y. Ralchenko and A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3 .

Ramanathan, K.

C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device?” Appl. Phys. Lett. 85, 2625–2627 (2004).
[CrossRef]

Reader, J.

Y. Ralchenko and A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3 .

Richardson, M.

Rockett, A. A.

J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, “Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices,” Appl. Phys. Lett. 80, 4540–4542, (2002).
[CrossRef]

Russo, R.

Sabsabi, M.

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, “An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectochim. Acta B 56, 1011–1025 (2001).
[CrossRef]

Sakurai, K.

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Salik, M.

M. Hanif, M. Salik, and M. A. Baig, “Quantitative studies of copper plasma using laser induced breakdown spectroscopy,” Opt. Lasers Eng. 49, 1456–1461 (2011).
[CrossRef]

Schechter, I.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

Scherbaum, F. J.

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius’ J. Anal. Chem. 355, 16–20 (1996).
[CrossRef]

Schock, H.

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

Shafarman, W.

M. Zellner, R. Birkmire, E. Eser, W. Shafarman, and J. Chen, “Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells,” Prog. Photovolt. Res. Appl. 11, 543–548 (2003).
[CrossRef]

Shafarman, W. N.

J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, “Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices,” Appl. Phys. Lett. 80, 4540–4542, (2002).
[CrossRef]

Shah, L.

Shenstone, A. G.

A. G. Shenstone, “The first spectrum of copper (Cu I),” Phil. Trans. R. Soc. A 241, 297–322 (1948).
[CrossRef]

Shim, H. S.

Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, and H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6, 581–585 (2011).
[CrossRef]

St-Onge, L.

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, “An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectochim. Acta B 56, 1011–1025 (2001).
[CrossRef]

Tang, X.

Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011).
[CrossRef]

Tsuchimochi, N.

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Unold, T.

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

Vadillo, J. M.

M. P. Mateo, J. M. Vadillo, and J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
[CrossRef]

Wiese, W. L.

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–924 (2002).
[CrossRef]

Willis, C. C. C.

Wischmann, W.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
[CrossRef]

Witte, W.

Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011).
[CrossRef]

Wuerz, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
[CrossRef]

Yamada, A.

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Yoo, J.

Zellner, M.

M. Zellner, R. Birkmire, E. Eser, W. Shafarman, and J. Chen, “Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells,” Prog. Photovolt. Res. Appl. 11, 543–548 (2003).
[CrossRef]

Zhang, Z.

Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011).
[CrossRef]

Anal. Chem. (1)

L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. H. Galmed and M. A. Harith, “Temporal follow up of the LTE conditions in aluminum laser induced plasma at different laser energies” Appl. Phys. B 91, 651–660 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

R. Chang and D. Perng, “Near-infrared photodetector with CuIn1−xAlxSe2 thin film,” Appl. Phys. Lett. 99, 081103 (2011).
[CrossRef]

C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device?” Appl. Phys. Lett. 85, 2625–2627 (2004).
[CrossRef]

J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, “Effect of Ga content on defect states in CuIn1−xGaxSe2 photovoltaic devices,” Appl. Phys. Lett. 80, 4540–4542, (2002).
[CrossRef]

Z. Zhang, X. Tang, U. Lemmer, W. Witte, O. Kiowski, M. Powalla, and H. Hölscher, “Analysis of untreated cross sections of Cu(In, Ga)Se2 thin-film solar cells with varying Ga content using Kelvin probe force microscopy,” Appl. Phys. Lett. 99, 042111 (2011).
[CrossRef]

Fresenius’ J. Anal. Chem. (1)

R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Fresenius’ J. Anal. Chem. 355, 16–20 (1996).
[CrossRef]

J. Anal. At. Spectrom. (1)

M. P. Mateo, J. M. Vadillo, and J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Ref. Data (1)

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–924 (2002).
[CrossRef]

J. Phys. Chem. Solids (1)

K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura, and H. Nakanishi, “Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates,” J. Phys. Chem. Solids 64, 1877–1880 (2003).
[CrossRef]

Nanoscale Res. Lett. (1)

Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, and H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6, 581–585 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

M. Hanif, M. Salik, and M. A. Baig, “Quantitative studies of copper plasma using laser induced breakdown spectroscopy,” Opt. Lasers Eng. 49, 1456–1461 (2011).
[CrossRef]

Phil. Trans. R. Soc. A (1)

A. G. Shenstone, “The first spectrum of copper (Cu I),” Phil. Trans. R. Soc. A 241, 297–322 (1948).
[CrossRef]

Prog. Photovolt. Res. Appl. (2)

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In, Ga) Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19, 894–897 (2011).
[CrossRef]

M. Zellner, R. Birkmire, E. Eser, W. Shafarman, and J. Chen, “Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells,” Prog. Photovolt. Res. Appl. 11, 543–548 (2003).
[CrossRef]

Spectochim. Acta B (2)

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, “An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectochim. Acta B 56, 1011–1025 (2001).
[CrossRef]

P. K. Diwakar, P. B. Jackson, and D. W. Hah, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: consideration of localized matrix effects,” Spectochim. Acta B 62, 1466–1474 (2007).
[CrossRef]

Thin Solid Films (1)

R. Caballero, C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates,” Thin Solid Films 517, 2187–2190 (2009).
[CrossRef]

Other (3)

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

http://physics.nist.gov/cuu/Constants/ .

Y. Ralchenko and A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Variation of peak intensities of the Cu/SLG and Cu/Mo/SLG samples as a function of laser fluence. (a), (b) First shot; (c), (d) second shot.

Fig. 2.
Fig. 2.

Variation of peak intensities of the Cu/SLG and Cu/Mo/SLG samples as a function of laser fluence (first shot, laser spot diameter=150μm).

Fig. 3.
Fig. 3.

Cross-sectional profiles of the craters produced on (a) Cu/SLG and (b) Cu/Mo/SLG samples by the first laser shot. (fluence=47.92J/cm2).

Fig. 4.
Fig. 4.

SEM images of the Cu/SLG and Cu/Mo/SLG samples. (a), (b) First shot; (c), (d) second shot.

Fig. 5.
Fig. 5.

Typical spectra of the atomic and ionic lines of copper obtained from Cu/SLG and Cu/Mo/SLG samples (fluence=47.92J/cm2).

Fig. 6.
Fig. 6.

Cu(I) atomic emission lines at 324.754 nm of the Cu/SLG and Cu/Mo/SLG samples fitted to the Lorentz function.

Fig. 7.
Fig. 7.

Temperature dependence of electron number density of the Cu/SLG and Cu/Mo/SLG samples calculated by the Saha–Boltzmann equation.

Tables (1)

Tables Icon

Table 1. Spectral Parameters of Cu(I) and Cu(II) Emission Lines Used in Saha–Boltzmann Equation [22]

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔλStarkne(2wrefneref),
ΔλStark=ΔλobservedΔλinstrumental,
ne=2(2πmekTp)32h3(gAλ)ion(λgA)atomIatomIionexp(V++EionEatomkTp),
ne1.6×1012Tp1/2ΔE3(cm3),

Metrics