Abstract

Standoff laser induced breakdown spectroscopy (LIBS) has previously been used to classify trace residues as either hazardous (explosives, biological, etc.) or benign. Correct classification can become more difficult depending on the surface/substrate underneath the residue due to variations in the laser-material interaction. In addition, classification can become problematic if the substrate material has a similar elemental composition to the residue. We have evaluated coupling multivariate analysis with standoff LIBS to determine the effectiveness of classifying thin explosive residue layers on painted surfaces. Good classification results were obtained despite the fact that the painted surface contributes to the LIBS emission signal.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
    [CrossRef]
  2. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  3. D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 572–578 (1987).
    [CrossRef]
  4. S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).
    [CrossRef]
  5. C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
    [CrossRef]
  6. A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta, Part B 63, 305–311 (2008).
    [CrossRef]
  7. J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82, 1389–1400 (2010).
    [CrossRef]
  8. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148–6152 (2003).
    [CrossRef]
  9. D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 micron,” Appl. Opt. 47, G149–G157 (2008).
    [CrossRef]
  10. Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta, Part B 63, 1011–1015 (2008).
    [CrossRef]
  11. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
    [CrossRef]
  12. V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1028–1039 (2009).
    [CrossRef]
  13. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 66, 12–20 (2011).
    [CrossRef]
  14. J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
    [CrossRef]
  15. F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta, Part B 64, 1059–1067 (2009).
    [CrossRef]
  16. D. C. Alvey, K. Morton, R. S. Harmon, J. L. Gottfried, J. J. Remus, L. M. Collins, and M. A. Wise, “Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: the example of garnet,” Appl. Opt. 49, C168–C180 (2010).
    [CrossRef]
  17. S. Duchene, V. Detalle, R. Bruder, and J. B. Sirven, “Chemometrics and laser induced breakdown spectroscopy (LIBS) analyses for identification of wall paintings pigments,” Curr. Anal. Chem. 6, 60–65 (2010).
  18. M. R. Martelli, F. Brygo, A. Sadoudi, P. Delaporte, and C. Barron, “Laser-induced breakdown spectroscopy and chemometrics: A novel potential method to analyze wheat grains,” J. Agric. Fd. Chem. 58, 7126–7134 (2010).
    [CrossRef]
  19. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121(2008).
    [CrossRef]
  20. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
    [CrossRef]
  21. J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
    [CrossRef]
  22. M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
    [CrossRef]
  23. F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta, Part B 66, 122–128 (2011).
    [CrossRef]
  24. J. L. Gottfried, “Discrimination of biological and chemical threats in residue mixtures on multiple surfaces,” Anal. Bioanal. Chem. 400, 3289–3301 (2011).
    [CrossRef]
  25. G. Bazalgette Courreges-Lacoste, B. Ahlers, and F. R. Perez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta, Part A 68, 1023–1028 (2007).
    [CrossRef]
  26. S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta, Part A 68, 1036–1045 (2007).
    [CrossRef]

2011 (3)

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 66, 12–20 (2011).
[CrossRef]

F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta, Part B 66, 122–128 (2011).
[CrossRef]

J. L. Gottfried, “Discrimination of biological and chemical threats in residue mixtures on multiple surfaces,” Anal. Bioanal. Chem. 400, 3289–3301 (2011).
[CrossRef]

2010 (4)

S. Duchene, V. Detalle, R. Bruder, and J. B. Sirven, “Chemometrics and laser induced breakdown spectroscopy (LIBS) analyses for identification of wall paintings pigments,” Curr. Anal. Chem. 6, 60–65 (2010).

M. R. Martelli, F. Brygo, A. Sadoudi, P. Delaporte, and C. Barron, “Laser-induced breakdown spectroscopy and chemometrics: A novel potential method to analyze wheat grains,” J. Agric. Fd. Chem. 58, 7126–7134 (2010).
[CrossRef]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82, 1389–1400 (2010).
[CrossRef]

D. C. Alvey, K. Morton, R. S. Harmon, J. L. Gottfried, J. J. Remus, L. M. Collins, and M. A. Wise, “Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: the example of garnet,” Appl. Opt. 49, C168–C180 (2010).
[CrossRef]

2009 (4)

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1028–1039 (2009).
[CrossRef]

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta, Part B 64, 1059–1067 (2009).
[CrossRef]

2008 (5)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta, Part B 63, 1011–1015 (2008).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121(2008).
[CrossRef]

D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 micron,” Appl. Opt. 47, G149–G157 (2008).
[CrossRef]

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta, Part B 63, 305–311 (2008).
[CrossRef]

2007 (4)

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

G. Bazalgette Courreges-Lacoste, B. Ahlers, and F. R. Perez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta, Part A 68, 1023–1028 (2007).
[CrossRef]

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta, Part A 68, 1036–1045 (2007).
[CrossRef]

2006 (2)

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
[CrossRef]

2003 (2)

1987 (1)

Ahlers, B.

G. Bazalgette Courreges-Lacoste, B. Ahlers, and F. R. Perez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta, Part A 68, 1023–1028 (2007).
[CrossRef]

Alvey, D. C.

Barker, M.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

Barron, C.

M. R. Martelli, F. Brygo, A. Sadoudi, P. Delaporte, and C. Barron, “Laser-induced breakdown spectroscopy and chemometrics: A novel potential method to analyze wheat grains,” J. Agric. Fd. Chem. 58, 7126–7134 (2010).
[CrossRef]

Bazalgette Courreges-Lacoste, G.

G. Bazalgette Courreges-Lacoste, B. Ahlers, and F. R. Perez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta, Part A 68, 1023–1028 (2007).
[CrossRef]

Bruder, R.

S. Duchene, V. Detalle, R. Bruder, and J. B. Sirven, “Chemometrics and laser induced breakdown spectroscopy (LIBS) analyses for identification of wall paintings pigments,” Curr. Anal. Chem. 6, 60–65 (2010).

Brygo, F.

M. R. Martelli, F. Brygo, A. Sadoudi, P. Delaporte, and C. Barron, “Laser-induced breakdown spectroscopy and chemometrics: A novel potential method to analyze wheat grains,” J. Agric. Fd. Chem. 58, 7126–7134 (2010).
[CrossRef]

Buono, E.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1028–1039 (2009).
[CrossRef]

Burgess, S.

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta, Part B 64, 1059–1067 (2009).
[CrossRef]

Clegg, S. M.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta, Part A 68, 1036–1045 (2007).
[CrossRef]

Collins, L. M.

Cortez, J.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Cremers, D. A.

D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 572–578 (1987).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Dagdigian, P. J.

De Lucia, F.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
[CrossRef]

De Lucia, F. C.

F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta, Part B 66, 122–128 (2011).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121(2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148–6152 (2003).
[CrossRef]

Delaporte, P.

M. R. Martelli, F. Brygo, A. Sadoudi, P. Delaporte, and C. Barron, “Laser-induced breakdown spectroscopy and chemometrics: A novel potential method to analyze wheat grains,” J. Agric. Fd. Chem. 58, 7126–7134 (2010).
[CrossRef]

Detalle, V.

S. Duchene, V. Detalle, R. Bruder, and J. B. Sirven, “Chemometrics and laser induced breakdown spectroscopy (LIBS) analyses for identification of wall paintings pigments,” Curr. Anal. Chem. 6, 60–65 (2010).

Dona, A.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 66, 12–20 (2011).
[CrossRef]

Duchene, S.

S. Duchene, V. Detalle, R. Bruder, and J. B. Sirven, “Chemometrics and laser induced breakdown spectroscopy (LIBS) analyses for identification of wall paintings pigments,” Curr. Anal. Chem. 6, 60–65 (2010).

Ferrero, A.

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta, Part B 63, 305–311 (2008).
[CrossRef]

Fricke-Begemann, C.

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta, Part B 63, 1011–1015 (2008).
[CrossRef]

Gonzaga, F. B.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Gottfried, J. L.

F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta, Part B 66, 122–128 (2011).
[CrossRef]

J. L. Gottfried, “Discrimination of biological and chemical threats in residue mixtures on multiple surfaces,” Anal. Bioanal. Chem. 400, 3289–3301 (2011).
[CrossRef]

D. C. Alvey, K. Morton, R. S. Harmon, J. L. Gottfried, J. J. Remus, L. M. Collins, and M. A. Wise, “Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: the example of garnet,” Appl. Opt. 49, C168–C180 (2010).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121(2008).
[CrossRef]

Harmon, R. S.

Jander, P.

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta, Part B 63, 1011–1015 (2008).
[CrossRef]

Javier Laserna, J.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
[CrossRef]

Jovicevic, S.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1028–1039 (2009).
[CrossRef]

Lacour, J.-L.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

Laserna, J. J.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 66, 12–20 (2011).
[CrossRef]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82, 1389–1400 (2010).
[CrossRef]

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta, Part B 63, 305–311 (2008).
[CrossRef]

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).
[CrossRef]

Lazic, V.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1028–1039 (2009).
[CrossRef]

Lopez-Moreno, C.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
[CrossRef]

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).
[CrossRef]

Lorenzo, J. A.

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82, 1389–1400 (2010).
[CrossRef]

Lucena, P.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 66, 12–20 (2011).
[CrossRef]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82, 1389–1400 (2010).
[CrossRef]

Lucey, P. G.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta, Part A 68, 1036–1045 (2007).
[CrossRef]

Manhes, G.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

Martelli, M. R.

M. R. Martelli, F. Brygo, A. Sadoudi, P. Delaporte, and C. Barron, “Laser-induced breakdown spectroscopy and chemometrics: A novel potential method to analyze wheat grains,” J. Agric. Fd. Chem. 58, 7126–7134 (2010).
[CrossRef]

Mauchien, P.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

Maurice, S.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

McNesby, K. L.

Misra, A. K.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta, Part A 68, 1036–1045 (2007).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121(2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
[CrossRef]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148–6152 (2003).
[CrossRef]

Moros, J.

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82, 1389–1400 (2010).
[CrossRef]

Morton, K.

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121(2008).
[CrossRef]

Noll, R.

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta, Part B 63, 1011–1015 (2008).
[CrossRef]

Palanco, S.

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
[CrossRef]

Palucci, A.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1028–1039 (2009).
[CrossRef]

Pasquini, C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Perez, F. R.

G. Bazalgette Courreges-Lacoste, B. Ahlers, and F. R. Perez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta, Part A 68, 1023–1028 (2007).
[CrossRef]

Poggi, C.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1028–1039 (2009).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Rayens, W.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

Remus, J. J.

Rose, J.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
[CrossRef]

Sadoudi, A.

M. R. Martelli, F. Brygo, A. Sadoudi, P. Delaporte, and C. Barron, “Laser-induced breakdown spectroscopy and chemometrics: A novel potential method to analyze wheat grains,” J. Agric. Fd. Chem. 58, 7126–7134 (2010).
[CrossRef]

Salle, B.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

Sharma, S. K.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta, Part A 68, 1036–1045 (2007).
[CrossRef]

Silva, L. M. C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Singh, J. P.

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta, Part B 64, 1059–1067 (2009).
[CrossRef]

Sirven, J. B.

S. Duchene, V. Detalle, R. Bruder, and J. B. Sirven, “Chemometrics and laser induced breakdown spectroscopy (LIBS) analyses for identification of wall paintings pigments,” Curr. Anal. Chem. 6, 60–65 (2010).

Sirven, J.-B.

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

Tobaria, L. M.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 66, 12–20 (2011).
[CrossRef]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82, 1389–1400 (2010).
[CrossRef]

Walters, R. A.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
[CrossRef]

Wang, Q.

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta, Part B 63, 1011–1015 (2008).
[CrossRef]

Whitehouse, A. I.

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
[CrossRef]

Wiens, R. C.

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta, Part A 68, 1036–1045 (2007).
[CrossRef]

Winkel, R. J.

Wise, M. A.

Wong, D. M.

Yueh, F.-Y.

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta, Part B 64, 1059–1067 (2009).
[CrossRef]

Zheng, H.

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta, Part B 64, 1059–1067 (2009).
[CrossRef]

Anal. Bioanal. Chem. (2)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

J. L. Gottfried, “Discrimination of biological and chemical threats in residue mixtures on multiple surfaces,” Anal. Bioanal. Chem. 400, 3289–3301 (2011).
[CrossRef]

Anal. Chem. (1)

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82, 1389–1400 (2010).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (1)

Curr. Anal. Chem. (1)

S. Duchene, V. Detalle, R. Bruder, and J. B. Sirven, “Chemometrics and laser induced breakdown spectroscopy (LIBS) analyses for identification of wall paintings pigments,” Curr. Anal. Chem. 6, 60–65 (2010).

J. Agric. Fd. Chem. (1)

M. R. Martelli, F. Brygo, A. Sadoudi, P. Delaporte, and C. Barron, “Laser-induced breakdown spectroscopy and chemometrics: A novel potential method to analyze wheat grains,” J. Agric. Fd. Chem. 58, 7126–7134 (2010).
[CrossRef]

J. Anal. At. Spectrom (1)

C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom 21, 55–60 (2006).
[CrossRef]

J. Anal. At. Spectrom. (3)

J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009).
[CrossRef]

J. Braz. Chem. Soc. (1)

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

J. Chemom. (1)

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

Spectrochim. Acta, Part A (2)

G. Bazalgette Courreges-Lacoste, B. Ahlers, and F. R. Perez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta, Part A 68, 1023–1028 (2007).
[CrossRef]

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, “Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust,” Spectrochim. Acta, Part A 68, 1036–1045 (2007).
[CrossRef]

Spectrochim. Acta, Part B (7)

F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta, Part B 66, 122–128 (2011).
[CrossRef]

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta, Part B 64, 1059–1067 (2009).
[CrossRef]

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1028–1039 (2009).
[CrossRef]

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 66, 12–20 (2011).
[CrossRef]

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta, Part B 63, 305–311 (2008).
[CrossRef]

Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta, Part B 63, 1011–1015 (2008).
[CrossRef]

S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, Part B 61, 88–95 (2006).
[CrossRef]

Other (1)

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Standoff LIBS system.

Fig. 2.
Fig. 2.

Timing optimization of double-pulse standoff LIBS system at 25–30 meters. Top: SNR of carbon, hydrogen, nitrogen, and oxygen of RDX on silver car panel at various gate delays and interpulse delays. Bottom: RMSEC value of a model containing RDX on a silver car panel, oil on a silver car panel, and a blank silver car panel. For both cases the best timing is a 1 μs gate delay and a 0.5 μs interpulse delay.

Fig. 3.
Fig. 3.

LIBS spectra of car panels. From top: black, blue, dark green, silver, teal, white, and red.

Fig. 4.
Fig. 4.

VIP scores of white car panel class (top) compared to the black car panel class (bottom) from the PLS-DA car panel model.

Fig. 5.
Fig. 5.

LIBS spectra of (a) RDX on dark green car panel, (b) lubricant oil on dark green car panel, (c) dust on dark green car panel, and a (d) blank dark green car panel. Note the different y axis scale for each spectrum.

Fig. 6.
Fig. 6.

LIBS spectra of RDX residue on car panel (solid) and blank car panel (dashed) for (a) black, (b) white, (c) red, and (d) teal car panels.

Fig. 7.
Fig. 7.

LIBS spectra of RDX on black car panel (bottom) and black car panel (middle) compared to the VIP scores of the explosive class (top) from the whole spectra PLS-DA model.

Fig. 8.
Fig. 8.

The probability that a test sample belongs to the explosive class determined from the PLS-DA (a) whole spectra model, (b) ratios and intensities model, and the (c) fused probabilities from the whole spectra model and ratios and intensities model.

Fig. 9.
Fig. 9.

VIP scores of blank car panel class (dotted) and explosive class (solid) in spectral regions containing explosive constituent elements (a) carbon, (b) hydrogen, (c) nitrogen, and (d) oxygen.

Tables (4)

Tables Icon

Table 1. Number of Spectra in Training and Validation Sets for Classifying Car Panels Based on Car Color and the Classification Results

Tables Icon

Table 2. Number of Samples in Training and Validation Sets Used for Classifying Residues on Car Panels

Tables Icon

Table 3. List of Atomic Emission Intensities and Ratios Used as Variable Inputs for PLS-DA Model

Tables Icon

Table 4. Classification Results of Residues on Car Panels Using Various Validation Sets

Metrics