Abstract

Detection of sulfur by optical emission spectroscopy generally presents some difficulties because the strongest lines are in the vacuum UV below 185 nm and therefore are readily absorbed by oxygen molecules in air. A novel concept for a low-cost and efficient system to detect sulfur using near-IR bands by laser-induced breakdown spectroscopy is here proposed. This concept is based on customized thick holographic gratings as spectral filtering elements. The signal integration and the temporal synchronization are performed using built-in custom electronics that amplify and integrate or trigger photodiode output signals. In this work, we use the near-IR lines at 921.287 nm and a background reference at 900 nm. Preliminary results show a limit of detection comparable to that of a conventional high-end system.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
    [CrossRef]
  2. F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
    [CrossRef]
  3. M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
    [CrossRef]
  4. L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 1131–1140 (2002).
    [CrossRef]
  5. L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199–6204 (2003).
    [CrossRef]
  6. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
    [CrossRef]
  7. M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta, Part B 56, 661–669 (2001).
    [CrossRef]
  8. I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
    [CrossRef]
  9. S. Kaski, H. Hakkanen, and J. Korppi-Tommola, “Sulfide mineral identification using laser-induced plasma spectroscopy,” Miner. Eng. 16, 1239–1243 (2003).
    [CrossRef]
  10. M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta, Part B 66, 39–56 (2011).
    [CrossRef]
  11. M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, and G. Wilsch, “Laser-induced breakdown spectroscopy for on-line sulfur analysis of minerals in ambient conditions,” Spectrochim. Acta, Part B 64, 1098–1104 (2009).
    [CrossRef]
  12. F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1121–1131 (2005).
    [CrossRef]
  13. F. Weritz, D. Schaurich, and G. Wisch, “Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared region,” Spectrochim. Acta, Part B 62, 1504–1511 (2007).
    [CrossRef]
  14. F. A. Weritz, A. Taffe, S. Dieter, and G. Wilsch, “Detailed depth profiles of sulfate ingress into concrete measured with laser-induced breakdown spectroscopy,” Constr. Build. Mater. 23, 275–283 (2009).
    [CrossRef]
  15. S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.
  16. B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
    [CrossRef]
  17. V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 141–146 (2009).
    [CrossRef]
  18. L. Dudragne, P. Adam, and J. Amourouz, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
    [CrossRef]
  19. J. Jasik, J. Heitz, J. D. Pedarnig, and P. Veis, “Vacuum ultraviolet laser-induced breakdown spectroscopy analysis of polymers,” Spectrochim. Acta, Part B 64, 1128–1134 (2009).
    [CrossRef]
  20. I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
    [CrossRef]
  21. A. Gonzalez, M. Ortiz, and J. Campos, “Determination of sulfur contents in steel by laser-produced plasma atomic emission spectroscopy,” Appl. Spectrosc. 49, 1632–1635 (1995).
    [CrossRef]
  22. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001).
    [CrossRef]
  23. L. J. Radziemski, D. A. Cremers, K. Benelli, C. Khoo, and R. D. Harris, “LIBS-based detection of As, Br, C, Cl, P, and S in the VUV spectral region in a Mars atmosphere,” presented at Lunar and Planetary Science XXXVI, Houston, TX, 2005, abstract 1747.
  24. J. Bengoechea and E. T. Kennedy, “Time-integrated, spatially resolved plasma characterization of steel samples in the VUV,” J. Anal. At. Spectrom. 19, 468–473 (2004).
    [CrossRef]
  25. M. H. Núňez, P. Cavalli, G. Petrucci, and N. Omenetto, “Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation,” Appl. Spectrosc. 54, 1805–1816 (2000).
    [CrossRef]
  26. V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and E. Teppo, “Online monitoring of the laser cleaning of marbles by LIBS sulfur detection,” in Lasers in the Conservation of Artworks (Springer, 2007), Vol. 116, pp. 429–435
  27. G. Asimellis, A. Giannoudakos, and M. Kompitsas, “New near-infrared LIBS detection technique for sulfur,” Anal. Bioanal. Chem. 385, 333–337 (2006).
    [CrossRef]
  28. Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST Atomic Spectra Database ver. 4.1.0,” (National Institute of Standards and Technology, 2011).
  29. L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” in Encyclopedia of Smart Materials (Wiley, 2002), pp. 770–780.
  30. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” in Practical Holography XIX: Materials and Application (SPIE, 2005), pp. 183–194.
  31. S. Blais-Ouellette, D. Gagnon, and S. Lessard, “Appartus and method for laser induced breakdown spectroscopy using a multiband sensor,” pub. no. WO/2009/103154 (2009).
  32. M. Verhaegen, “Tunable laser source exhibits out-of-band rejection of 10-6,” Laser Focus World 46(3) (2010).
  33. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  34. IUPAC, Compendium of Chemical Terminology, 2nd ed.(IUPAC, 1997).
  35. Y. Mouget, M. Tourigny, P. Gosselin, and S. Béchard, “Limits of detection of a commercial laser-induced breakdown spectroscopy instrument for various elements in several tablet formulations,” presented at the PITTCON Conference (2002), poster 1687.

2011 (1)

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta, Part B 66, 39–56 (2011).
[CrossRef]

2010 (1)

M. Verhaegen, “Tunable laser source exhibits out-of-band rejection of 10-6,” Laser Focus World 46(3) (2010).

2009 (4)

M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, and G. Wilsch, “Laser-induced breakdown spectroscopy for on-line sulfur analysis of minerals in ambient conditions,” Spectrochim. Acta, Part B 64, 1098–1104 (2009).
[CrossRef]

F. A. Weritz, A. Taffe, S. Dieter, and G. Wilsch, “Detailed depth profiles of sulfate ingress into concrete measured with laser-induced breakdown spectroscopy,” Constr. Build. Mater. 23, 275–283 (2009).
[CrossRef]

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 141–146 (2009).
[CrossRef]

J. Jasik, J. Heitz, J. D. Pedarnig, and P. Veis, “Vacuum ultraviolet laser-induced breakdown spectroscopy analysis of polymers,” Spectrochim. Acta, Part B 64, 1128–1134 (2009).
[CrossRef]

2007 (1)

F. Weritz, D. Schaurich, and G. Wisch, “Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared region,” Spectrochim. Acta, Part B 62, 1504–1511 (2007).
[CrossRef]

2006 (1)

G. Asimellis, A. Giannoudakos, and M. Kompitsas, “New near-infrared LIBS detection technique for sulfur,” Anal. Bioanal. Chem. 385, 333–337 (2006).
[CrossRef]

2005 (2)

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1121–1131 (2005).
[CrossRef]

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
[CrossRef]

2004 (5)

B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

J. Bengoechea and E. T. Kennedy, “Time-integrated, spatially resolved plasma characterization of steel samples in the VUV,” J. Anal. At. Spectrom. 19, 468–473 (2004).
[CrossRef]

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

2003 (2)

S. Kaski, H. Hakkanen, and J. Korppi-Tommola, “Sulfide mineral identification using laser-induced plasma spectroscopy,” Miner. Eng. 16, 1239–1243 (2003).
[CrossRef]

L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199–6204 (2003).
[CrossRef]

2002 (1)

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 1131–1140 (2002).
[CrossRef]

2001 (3)

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001).
[CrossRef]

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta, Part B 56, 661–669 (2001).
[CrossRef]

2000 (2)

1998 (1)

1995 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Adam, P.

Amourouz, J.

Asimellis, G.

G. Asimellis, A. Giannoudakos, and M. Kompitsas, “New near-infrared LIBS detection technique for sulfur,” Anal. Bioanal. Chem. 385, 333–337 (2006).
[CrossRef]

Barefield, J. E.

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Béchard, S.

Y. Mouget, M. Tourigny, P. Gosselin, and S. Béchard, “Limits of detection of a commercial laser-induced breakdown spectroscopy instrument for various elements in several tablet formulations,” presented at the PITTCON Conference (2002), poster 1687.

Becker-Ross, H.

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Benelli, K.

L. J. Radziemski, D. A. Cremers, K. Benelli, C. Khoo, and R. D. Harris, “LIBS-based detection of As, Br, C, Cl, P, and S in the VUV spectral region in a Mars atmosphere,” presented at Lunar and Planetary Science XXXVI, Houston, TX, 2005, abstract 1747.

Bengoechea, J.

J. Bengoechea and E. T. Kennedy, “Time-integrated, spatially resolved plasma characterization of steel samples in the VUV,” J. Anal. At. Spectrom. 19, 468–473 (2004).
[CrossRef]

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001).
[CrossRef]

Bicchieri, M.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

Blais-Ouellette, S.

S. Blais-Ouellette, D. Gagnon, and S. Lessard, “Appartus and method for laser induced breakdown spectroscopy using a multiband sensor,” pub. no. WO/2009/103154 (2009).

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001).
[CrossRef]

Burakov, V. S.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 141–146 (2009).
[CrossRef]

Campos, J.

Cavalli, P.

Ciapurin, I. V.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” in Practical Holography XIX: Materials and Application (SPIE, 2005), pp. 183–194.

Clegg, S. M.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta, Part B 66, 39–56 (2011).
[CrossRef]

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Colao, F.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and E. Teppo, “Online monitoring of the laser cleaning of marbles by LIBS sulfur detection,” in Lasers in the Conservation of Artworks (Springer, 2007), Vol. 116, pp. 429–435

Corsi, M.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

Cremers, D. A.

B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

L. J. Radziemski, D. A. Cremers, K. Benelli, C. Khoo, and R. D. Harris, “LIBS-based detection of As, Br, C, Cl, P, and S in the VUV spectral region in a Mars atmosphere,” presented at Lunar and Planetary Science XXXVI, Houston, TX, 2005, abstract 1747.

Cristoforetti, G.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

DeLucia, F. C.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
[CrossRef]

Dieter, S.

F. A. Weritz, A. Taffe, S. Dieter, and G. Wilsch, “Detailed depth profiles of sulfate ingress into concrete measured with laser-induced breakdown spectroscopy,” Constr. Build. Mater. 23, 275–283 (2009).
[CrossRef]

Dudragne, L.

Dyar, M. D.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta, Part B 66, 39–56 (2011).
[CrossRef]

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Falk, H.

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta, Part B 56, 661–669 (2001).
[CrossRef]

Fantoni, R.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and E. Teppo, “Online monitoring of the laser cleaning of marbles by LIBS sulfur detection,” in Lasers in the Conservation of Artworks (Springer, 2007), Vol. 116, pp. 429–435

Fasaki, I.

M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, and G. Wilsch, “Laser-induced breakdown spectroscopy for on-line sulfur analysis of minerals in ambient conditions,” Spectrochim. Acta, Part B 64, 1098–1104 (2009).
[CrossRef]

Fichet, P.

B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

Florek, S.

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Gaft, M.

M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, and G. Wilsch, “Laser-induced breakdown spectroscopy for on-line sulfur analysis of minerals in ambient conditions,” Spectrochim. Acta, Part B 64, 1098–1104 (2009).
[CrossRef]

Gagnon, D.

S. Blais-Ouellette, D. Gagnon, and S. Lessard, “Appartus and method for laser induced breakdown spectroscopy using a multiband sensor,” pub. no. WO/2009/103154 (2009).

Giannoudakos, A.

G. Asimellis, A. Giannoudakos, and M. Kompitsas, “New near-infrared LIBS detection technique for sulfur,” Anal. Bioanal. Chem. 385, 333–337 (2006).
[CrossRef]

Glebov, L. B.

L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” in Encyclopedia of Smart Materials (Wiley, 2002), pp. 770–780.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” in Practical Holography XIX: Materials and Application (SPIE, 2005), pp. 183–194.

Gonzalez, A.

Gosselin, P.

Y. Mouget, M. Tourigny, P. Gosselin, and S. Béchard, “Limits of detection of a commercial laser-induced breakdown spectroscopy instrument for various elements in several tablet formulations,” presented at the PITTCON Conference (2002), poster 1687.

Haisch, C.

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Hakkanen, H.

S. Kaski, H. Hakkanen, and J. Korppi-Tommola, “Sulfide mineral identification using laser-induced plasma spectroscopy,” Miner. Eng. 16, 1239–1243 (2003).
[CrossRef]

Harmon, R. S.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
[CrossRef]

Harris, R. D.

L. J. Radziemski, D. A. Cremers, K. Benelli, C. Khoo, and R. D. Harris, “LIBS-based detection of As, Br, C, Cl, P, and S in the VUV spectral region in a Mars atmosphere,” presented at Lunar and Planetary Science XXXVI, Houston, TX, 2005, abstract 1747.

Heitz, J.

J. Jasik, J. Heitz, J. D. Pedarnig, and P. Veis, “Vacuum ultraviolet laser-induced breakdown spectroscopy analysis of polymers,” Spectrochim. Acta, Part B 64, 1128–1134 (2009).
[CrossRef]

Hemmerlin, M.

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta, Part B 56, 661–669 (2001).
[CrossRef]

Humphries, S.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta, Part B 66, 39–56 (2011).
[CrossRef]

Isakov, S. N.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 141–146 (2009).
[CrossRef]

Jasik, J.

J. Jasik, J. Heitz, J. D. Pedarnig, and P. Veis, “Vacuum ultraviolet laser-induced breakdown spectroscopy analysis of polymers,” Spectrochim. Acta, Part B 64, 1128–1134 (2009).
[CrossRef]

Kaski, S.

S. Kaski, H. Hakkanen, and J. Korppi-Tommola, “Sulfide mineral identification using laser-induced plasma spectroscopy,” Miner. Eng. 16, 1239–1243 (2003).
[CrossRef]

Kennedy, E. T.

J. Bengoechea and E. T. Kennedy, “Time-integrated, spatially resolved plasma characterization of steel samples in the VUV,” J. Anal. At. Spectrom. 19, 468–473 (2004).
[CrossRef]

Khoo, C.

L. J. Radziemski, D. A. Cremers, K. Benelli, C. Khoo, and R. D. Harris, “LIBS-based detection of As, Br, C, Cl, P, and S in the VUV spectral region in a Mars atmosphere,” presented at Lunar and Planetary Science XXXVI, Houston, TX, 2005, abstract 1747.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kompitsas, M.

M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, and G. Wilsch, “Laser-induced breakdown spectroscopy for on-line sulfur analysis of minerals in ambient conditions,” Spectrochim. Acta, Part B 64, 1098–1104 (2009).
[CrossRef]

G. Asimellis, A. Giannoudakos, and M. Kompitsas, “New near-infrared LIBS detection technique for sulfur,” Anal. Bioanal. Chem. 385, 333–337 (2006).
[CrossRef]

Kononov, V. A.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 141–146 (2009).
[CrossRef]

Korppi-Tommola, J.

S. Kaski, H. Hakkanen, and J. Korppi-Tommola, “Sulfide mineral identification using laser-induced plasma spectroscopy,” Miner. Eng. 16, 1239–1243 (2003).
[CrossRef]

Kramida, A. E.

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST Atomic Spectra Database ver. 4.1.0,” (National Institute of Standards and Technology, 2011).

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001).
[CrossRef]

Kwong, E.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 1131–1140 (2002).
[CrossRef]

Lacour, J. L.

B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

Lacour, J.-L.

B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Lane, M. D.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta, Part B 66, 39–56 (2011).
[CrossRef]

LaPointe, A.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
[CrossRef]

Lazic, V.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and E. Teppo, “Online monitoring of the laser cleaning of marbles by LIBS sulfur detection,” in Lasers in the Conservation of Artworks (Springer, 2007), Vol. 116, pp. 429–435

Lessard, S.

S. Blais-Ouellette, D. Gagnon, and S. Lessard, “Appartus and method for laser induced breakdown spectroscopy using a multiband sensor,” pub. no. WO/2009/103154 (2009).

Mauchien, P.

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Maurice, S.

B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

McNesby, K. L.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
[CrossRef]

Meilland, R.

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta, Part B 56, 661–669 (2001).
[CrossRef]

Miziolek, A. W.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
[CrossRef]

Mönch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001).
[CrossRef]

Mouget, Y.

Y. Mouget, M. Tourigny, P. Gosselin, and S. Béchard, “Limits of detection of a commercial laser-induced breakdown spectroscopy instrument for various elements in several tablet formulations,” presented at the PITTCON Conference (2002), poster 1687.

Nagli, L.

M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, and G. Wilsch, “Laser-induced breakdown spectroscopy for on-line sulfur analysis of minerals in ambient conditions,” Spectrochim. Acta, Part B 64, 1098–1104 (2009).
[CrossRef]

Nardone, M.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

Nedelko, M. I.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 141–146 (2009).
[CrossRef]

Niessner, R.

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Noll, R.

L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199–6204 (2003).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Núnez, M. H.

Omenetto, N.

Ortiz, M.

Palleschi, V.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

Panne, U.

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Paulard, L.

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta, Part B 56, 661–669 (2001).
[CrossRef]

Pedarnig, J. D.

J. Jasik, J. Heitz, J. D. Pedarnig, and P. Veis, “Vacuum ultraviolet laser-induced breakdown spectroscopy analysis of polymers,” Spectrochim. Acta, Part B 64, 1128–1134 (2009).
[CrossRef]

Peter, L.

L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199–6204 (2003).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Petrucci, G.

Radivojevic, I.

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski, D. A. Cremers, K. Benelli, C. Khoo, and R. D. Harris, “LIBS-based detection of As, Br, C, Cl, P, and S in the VUV spectral region in a Mars atmosphere,” presented at Lunar and Planetary Science XXXVI, Houston, TX, 2005, abstract 1747.

Ralchenko, Y.

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST Atomic Spectra Database ver. 4.1.0,” (National Institute of Standards and Technology, 2011).

Reader, J.

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST Atomic Spectra Database ver. 4.1.0,” (National Institute of Standards and Technology, 2011).

Russo, P. A.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

Ryahi, S.

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1121–1131 (2005).
[CrossRef]

Sabsabi, M.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 1131–1140 (2002).
[CrossRef]

Salle, B.

B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

Sallé, B.

B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Salvetti, A.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

Samuels, A. C.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
[CrossRef]

Schaurich, D.

F. Weritz, D. Schaurich, and G. Wisch, “Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared region,” Spectrochim. Acta, Part B 62, 1504–1511 (2007).
[CrossRef]

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1121–1131 (2005).
[CrossRef]

Sirven, J.-B.

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Sklute, E. C.

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Smirnov, V. I.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” in Practical Holography XIX: Materials and Application (SPIE, 2005), pp. 183–194.

Sodo, A.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

Spizzichino, V.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and E. Teppo, “Online monitoring of the laser cleaning of marbles by LIBS sulfur detection,” in Lasers in the Conservation of Artworks (Springer, 2007), Vol. 116, pp. 429–435

St-Onge, L.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 1131–1140 (2002).
[CrossRef]

Sturm, V.

L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199–6204 (2003).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Taffe, A.

F. A. Weritz, A. Taffe, S. Dieter, and G. Wilsch, “Detailed depth profiles of sulfate ingress into concrete measured with laser-induced breakdown spectroscopy,” Constr. Build. Mater. 23, 275–283 (2009).
[CrossRef]

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1121–1131 (2005).
[CrossRef]

Tarasenko, N. V.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 141–146 (2009).
[CrossRef]

Team, N. A.

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST Atomic Spectra Database ver. 4.1.0,” (National Institute of Standards and Technology, 2011).

Teppo, E.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and E. Teppo, “Online monitoring of the laser cleaning of marbles by LIBS sulfur detection,” in Lasers in the Conservation of Artworks (Springer, 2007), Vol. 116, pp. 429–435

Thompson, J. R.

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Tognoni, E.

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

Tourigny, M.

Y. Mouget, M. Tourigny, P. Gosselin, and S. Béchard, “Limits of detection of a commercial laser-induced breakdown spectroscopy instrument for various elements in several tablet formulations,” presented at the PITTCON Conference (2002), poster 1687.

Tucker, J. M.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta, Part B 66, 39–56 (2011).
[CrossRef]

Vadas, E. B.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 1131–1140 (2002).
[CrossRef]

Vaniman, D. T.

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Vasilev, N. N.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 141–146 (2009).
[CrossRef]

Veis, P.

J. Jasik, J. Heitz, J. D. Pedarnig, and P. Veis, “Vacuum ultraviolet laser-induced breakdown spectroscopy analysis of polymers,” Spectrochim. Acta, Part B 64, 1128–1134 (2009).
[CrossRef]

Verhaegen, M.

M. Verhaegen, “Tunable laser source exhibits out-of-band rejection of 10-6,” Laser Focus World 46(3) (2010).

Vors, E.

B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

Walters, R. A.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
[CrossRef]

Weritz, F.

F. Weritz, D. Schaurich, and G. Wisch, “Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared region,” Spectrochim. Acta, Part B 62, 1504–1511 (2007).
[CrossRef]

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1121–1131 (2005).
[CrossRef]

Weritz, F. A.

F. A. Weritz, A. Taffe, S. Dieter, and G. Wilsch, “Detailed depth profiles of sulfate ingress into concrete measured with laser-induced breakdown spectroscopy,” Constr. Build. Mater. 23, 275–283 (2009).
[CrossRef]

Wiens, R. C.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta, Part B 66, 39–56 (2011).
[CrossRef]

B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Wilsch, G.

M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, and G. Wilsch, “Laser-induced breakdown spectroscopy for on-line sulfur analysis of minerals in ambient conditions,” Spectrochim. Acta, Part B 64, 1098–1104 (2009).
[CrossRef]

F. A. Weritz, A. Taffe, S. Dieter, and G. Wilsch, “Detailed depth profiles of sulfate ingress into concrete measured with laser-induced breakdown spectroscopy,” Constr. Build. Mater. 23, 275–283 (2009).
[CrossRef]

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1121–1131 (2005).
[CrossRef]

Winkel, R. J.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
[CrossRef]

Wintjens, P.

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta, Part B 56, 661–669 (2001).
[CrossRef]

Wisch, G.

F. Weritz, D. Schaurich, and G. Wisch, “Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared region,” Spectrochim. Acta, Part B 62, 1504–1511 (2007).
[CrossRef]

Anal. Bioanal. Chem. (1)

G. Asimellis, A. Giannoudakos, and M. Kompitsas, “New near-infrared LIBS detection technique for sulfur,” Anal. Bioanal. Chem. 385, 333–337 (2006).
[CrossRef]

Anal. Chem. (2)

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

I. Radivojevic, C. Haisch, R. Niessner, S. Florek, H. Becker-Ross, and U. Panne, “Microanalysis by laser-induced plasma spectroscopy in the vacuum ultraviolet,” Anal. Chem. 76, 1648–1656 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Constr. Build. Mater. (1)

F. A. Weritz, A. Taffe, S. Dieter, and G. Wilsch, “Detailed depth profiles of sulfate ingress into concrete measured with laser-induced breakdown spectroscopy,” Constr. Build. Mater. 23, 275–283 (2009).
[CrossRef]

IEEE Sens. J. (1)

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681–689 (2005).
[CrossRef]

J. Anal. At. Spectrom. (1)

J. Bengoechea and E. T. Kennedy, “Time-integrated, spatially resolved plasma characterization of steel samples in the VUV,” J. Anal. At. Spectrom. 19, 468–473 (2004).
[CrossRef]

Laser Focus World (1)

M. Verhaegen, “Tunable laser source exhibits out-of-band rejection of 10-6,” Laser Focus World 46(3) (2010).

Miner. Eng. (1)

S. Kaski, H. Hakkanen, and J. Korppi-Tommola, “Sulfide mineral identification using laser-induced plasma spectroscopy,” Miner. Eng. 16, 1239–1243 (2003).
[CrossRef]

Spectrochim. Acta, Part B (12)

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta, Part B 66, 39–56 (2011).
[CrossRef]

M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, and G. Wilsch, “Laser-induced breakdown spectroscopy for on-line sulfur analysis of minerals in ambient conditions,” Spectrochim. Acta, Part B 64, 1098–1104 (2009).
[CrossRef]

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60, 1121–1131 (2005).
[CrossRef]

F. Weritz, D. Schaurich, and G. Wisch, “Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared region,” Spectrochim. Acta, Part B 62, 1504–1511 (2007).
[CrossRef]

B. Sallé, J.-L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 141–146 (2009).
[CrossRef]

B. Salle, J. L. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta, Part B 59, 1413–1422 (2004).
[CrossRef]

M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta, Part B 56, 915–922 (2001).
[CrossRef]

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 1131–1140 (2002).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, Part B 56, 637–649 (2001).
[CrossRef]

M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, “Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit,” Spectrochim. Acta, Part B 56, 661–669 (2001).
[CrossRef]

J. Jasik, J. Heitz, J. D. Pedarnig, and P. Veis, “Vacuum ultraviolet laser-induced breakdown spectroscopy analysis of polymers,” Spectrochim. Acta, Part B 64, 1128–1134 (2009).
[CrossRef]

Other (9)

IUPAC, Compendium of Chemical Terminology, 2nd ed.(IUPAC, 1997).

Y. Mouget, M. Tourigny, P. Gosselin, and S. Béchard, “Limits of detection of a commercial laser-induced breakdown spectroscopy instrument for various elements in several tablet formulations,” presented at the PITTCON Conference (2002), poster 1687.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and E. Teppo, “Online monitoring of the laser cleaning of marbles by LIBS sulfur detection,” in Lasers in the Conservation of Artworks (Springer, 2007), Vol. 116, pp. 429–435

L. J. Radziemski, D. A. Cremers, K. Benelli, C. Khoo, and R. D. Harris, “LIBS-based detection of As, Br, C, Cl, P, and S in the VUV spectral region in a Mars atmosphere,” presented at Lunar and Planetary Science XXXVI, Houston, TX, 2005, abstract 1747.

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST Atomic Spectra Database ver. 4.1.0,” (National Institute of Standards and Technology, 2011).

L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” in Encyclopedia of Smart Materials (Wiley, 2002), pp. 770–780.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” in Practical Holography XIX: Materials and Application (SPIE, 2005), pp. 183–194.

S. Blais-Ouellette, D. Gagnon, and S. Lessard, “Appartus and method for laser induced breakdown spectroscopy using a multiband sensor,” pub. no. WO/2009/103154 (2009).

S. M. Clegg, R. C. Wiens, M. D. Dyar, D. T. Vaniman, J. R. Thompson, E. C. Sklute, J. E. Barefield, B. Sallé, J.-B. Sirven, P. Mauchien, J.-L. Lacour, and S. Maurice, “Sulfur geochemical analysis with remote laser induced breakdown spectroscopy on the 2009 Mars Science Laboratory Rover,” in 38th Lunar and Planetary Science Conference (2007), p. 1960.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Atomic emission spectrum of sulfur from 150 nm to 1 µm [28].

Fig. 2.
Fig. 2.

Optical design showing ray tracing.

Fig. 3.
Fig. 3.

Signal (top) and background (bottom) measurement with simulated plasma source using high sensitivity ANDO optical spectrum analyzer at 0.1 nm of resolution.

Fig. 4.
Fig. 4.

Experimental setup.

Fig. 5.
Fig. 5.

Calibration curve on the net signal (top chart), the normalized signal (middle chart), and normalized net signal (bottom chart).

Tables (4)

Tables Icon

Table 1. Reflective VBG Specifications

Tables Icon

Table 2. Overall Performancesa,b of the Prototype

Tables Icon

Table 3. Analytical Casesc

Tables Icon

Table 4. Results for Analytical Cases 2 to 4

Metrics