Abstract

Quantitative carbon measurement in anthracites remains difficult with laser-induced breakdown spectroscopy (LIBS) due to its relatively high measurement uncertainty. To improve the measurement repeatability, binders to bind the anthracite powder together were utilized for LIBS measurement. Results showed that the optimized binder Na2SiO3·9H2O, with Si from the binder as the internal calibration element, can yield the overall best measurement precision and accuracy. Using 15 anthracites for calibration and 7 anthracites for validation and with optimized percentage of Na2SiO3·9H2O as binder, the average value of the measurement’s relative standard deviation (RSD), R2, and root mean square error of prediction (RMSEP) were 12.1%, 0.76, and 6.25%, respectively, proving the applicability of binder for carbon measurement in anthracites.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
  2. D. Body and B. L. Chadwick, “Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system,” Spectrochim. Acta, Part B 56, 725–736 (2001).
  3. M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63, 1177–1182 (2008).
  4. F. J. Wallis, B. L. Chadwick, and R. J. S. Morrison, “Analysis of lignite using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 54, 1231–1235 (2000).
  5. L. G. Blevins, C. R. Shaddix, S. M. Sickafoose, and P. M. Walsh, “Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces,” Appl. Opt. 42, 6107–6118 (2003).
  6. T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Characterization of coal fly ash components by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1093–1097 (2009).
  7. T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant,” Spectrochim. Acta, Part B 65, 734–737 (2010).
  8. M. P. Mateo, G. Nicolas, and A. Yanez, “Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations,” Appl. Surf. Sci. 254, 868–872 (2007).
  9. M. Kurihara, K. Ikeda, Y. Izawa, Y. Deguchi, and H. Tarui, “Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6159–6165 (2003).
  10. M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 701–709 (2002).
  11. L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, “Analysis of pulverized coal by laser-induced breakdown spectroscopy,” Plasma Sci. Tech. 7, 3041–3044 (2005).
  12. J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3261–3271 (2011).
    [CrossRef]
  13. R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser-plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
  14. B. Lal, H. B. Zheng, F. Y. Yueh, and J. P. Singh, “Parametric study of pellets for elemental analysis with laser-induced breakdown spectroscopy,” Appl. Opt. 43, 2792–2797 (2004).
  15. M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73, 1469–1478 (2009).
  16. J. H. Kwak, C. Lenth, C. Salb, E. J. Ko, K. W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1105–1110 (2009).
  17. W. D. Zhou, L. I. Kexue, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, Part B 65, 420–424 (2010).
  18. W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18, 2573–2578 (2010).
  19. W. D. Zhou, K. X. Li, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25, 1475–1481(2010).
  20. W. D. Zhou, K. X. Li, X. F. Li, H. G. Qian, J. Shao, X. D. Fang, P. H. Xie, and W. Q. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36, 2961–2963 (2011).
  21. J. Feng, Z. Wang, Z. Li, and W. D. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, Part B 65, 549–556 (2010).
  22. Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182(2011).
  23. Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2289–2299 (2011).
  24. L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2274–2280 (2011).
  25. Y. Liu, J.-d. Lu, P. Li, S.-h. Pan, C.-l. Xie, and M.-c. Jiang, “Determination of carbon content in pulverized coal with laser-induced breakdown spectroscopy by internal standard method,” Proceedings Chinese Society Electrical Engineering 29, 1–44 (2009).

2011 (5)

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3261–3271 (2011).
[CrossRef]

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182(2011).

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2289–2299 (2011).

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2274–2280 (2011).

W. D. Zhou, K. X. Li, X. F. Li, H. G. Qian, J. Shao, X. D. Fang, P. H. Xie, and W. Q. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36, 2961–2963 (2011).

2010 (5)

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18, 2573–2578 (2010).

W. D. Zhou, K. X. Li, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25, 1475–1481(2010).

W. D. Zhou, L. I. Kexue, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, Part B 65, 420–424 (2010).

J. Feng, Z. Wang, Z. Li, and W. D. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, Part B 65, 549–556 (2010).

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant,” Spectrochim. Acta, Part B 65, 734–737 (2010).

2009 (4)

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Characterization of coal fly ash components by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1093–1097 (2009).

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73, 1469–1478 (2009).

J. H. Kwak, C. Lenth, C. Salb, E. J. Ko, K. W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1105–1110 (2009).

Y. Liu, J.-d. Lu, P. Li, S.-h. Pan, C.-l. Xie, and M.-c. Jiang, “Determination of carbon content in pulverized coal with laser-induced breakdown spectroscopy by internal standard method,” Proceedings Chinese Society Electrical Engineering 29, 1–44 (2009).

2008 (1)

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63, 1177–1182 (2008).

2007 (1)

M. P. Mateo, G. Nicolas, and A. Yanez, “Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations,” Appl. Surf. Sci. 254, 868–872 (2007).

2005 (1)

L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, “Analysis of pulverized coal by laser-induced breakdown spectroscopy,” Plasma Sci. Tech. 7, 3041–3044 (2005).

2004 (1)

2003 (2)

2002 (1)

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 701–709 (2002).

2001 (2)

D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).

D. Body and B. L. Chadwick, “Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system,” Spectrochim. Acta, Part B 56, 725–736 (2001).

2000 (1)

1994 (1)

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser-plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).

Blevins, L. G.

Body, D.

D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).

D. Body and B. L. Chadwick, “Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system,” Spectrochim. Acta, Part B 56, 725–736 (2001).

Chadwick, B. L.

D. Body and B. L. Chadwick, “Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system,” Spectrochim. Acta, Part B 56, 725–736 (2001).

D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).

F. J. Wallis, B. L. Chadwick, and R. J. S. Morrison, “Analysis of lignite using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 54, 1231–1235 (2000).

Chen, Q. L.

Chen, W.

L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, “Analysis of pulverized coal by laser-induced breakdown spectroscopy,” Plasma Sci. Tech. 7, 3041–3044 (2005).

Ctvrtnickova, T.

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant,” Spectrochim. Acta, Part B 65, 734–737 (2010).

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Characterization of coal fly ash components by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1093–1097 (2009).

Deguchi, Y.

M. Kurihara, K. Ikeda, Y. Izawa, Y. Deguchi, and H. Tarui, “Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6159–6165 (2003).

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 701–709 (2002).

Dvir, E.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63, 1177–1182 (2008).

Essington, M. E.

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73, 1469–1478 (2009).

Fang, X. D.

Feng, J.

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182(2011).

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3261–3271 (2011).
[CrossRef]

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2289–2299 (2011).

J. Feng, Z. Wang, Z. Li, and W. D. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, Part B 65, 549–556 (2010).

Feng, W.

L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, “Analysis of pulverized coal by laser-induced breakdown spectroscopy,” Plasma Sci. Tech. 7, 3041–3044 (2005).

Gaft, M.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63, 1177–1182 (2008).

Hou, Z.

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2274–2280 (2011).

Hull, R. A.

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73, 1469–1478 (2009).

Ikeda, K.

Iwasaki, S.

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 701–709 (2002).

Izawa, Y.

Jiang, M.-c.

Y. Liu, J.-d. Lu, P. Li, S.-h. Pan, C.-l. Xie, and M.-c. Jiang, “Determination of carbon content in pulverized coal with laser-induced breakdown spectroscopy by internal standard method,” Proceedings Chinese Society Electrical Engineering 29, 1–44 (2009).

Kexue, L. I.

W. D. Zhou, L. I. Kexue, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, Part B 65, 420–424 (2010).

Kim, K. W.

J. H. Kwak, C. Lenth, C. Salb, E. J. Ko, K. W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1105–1110 (2009).

Ko, E. J.

J. H. Kwak, C. Lenth, C. Salb, E. J. Ko, K. W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1105–1110 (2009).

Kompa, K. L.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser-plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).

Kurihara, M.

Kwak, J. H.

J. H. Kwak, C. Lenth, C. Salb, E. J. Ko, K. W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1105–1110 (2009).

Lal, B.

Lenth, C.

J. H. Kwak, C. Lenth, C. Salb, E. J. Ko, K. W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1105–1110 (2009).

Li, K. X.

Li, L.

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2289–2299 (2011).

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182(2011).

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2274–2280 (2011).

Li, P.

Y. Liu, J.-d. Lu, P. Li, S.-h. Pan, C.-l. Xie, and M.-c. Jiang, “Determination of carbon content in pulverized coal with laser-induced breakdown spectroscopy by internal standard method,” Proceedings Chinese Society Electrical Engineering 29, 1–44 (2009).

Li, X. F.

Li, Z.

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182(2011).

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2274–2280 (2011).

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2289–2299 (2011).

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3261–3271 (2011).
[CrossRef]

J. Feng, Z. Wang, Z. Li, and W. D. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, Part B 65, 549–556 (2010).

Liu, W. Q.

Liu, Y.

Y. Liu, J.-d. Lu, P. Li, S.-h. Pan, C.-l. Xie, and M.-c. Jiang, “Determination of carbon content in pulverized coal with laser-induced breakdown spectroscopy by internal standard method,” Proceedings Chinese Society Electrical Engineering 29, 1–44 (2009).

Long, J. M.

Lu, J. D.

L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, “Analysis of pulverized coal by laser-induced breakdown spectroscopy,” Plasma Sci. Tech. 7, 3041–3044 (2005).

Lu, J.-d.

Y. Liu, J.-d. Lu, P. Li, S.-h. Pan, C.-l. Xie, and M.-c. Jiang, “Determination of carbon content in pulverized coal with laser-induced breakdown spectroscopy by internal standard method,” Proceedings Chinese Society Electrical Engineering 29, 1–44 (2009).

Mateo, M. P.

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant,” Spectrochim. Acta, Part B 65, 734–737 (2010).

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Characterization of coal fly ash components by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1093–1097 (2009).

M. P. Mateo, G. Nicolas, and A. Yanez, “Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations,” Appl. Surf. Sci. 254, 868–872 (2007).

Melnichenko, G. V.

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73, 1469–1478 (2009).

Modiano, H.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63, 1177–1182 (2008).

Morrison, R. J. S.

Ni, W.

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2289–2299 (2011).

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3261–3271 (2011).
[CrossRef]

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182(2011).

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2274–2280 (2011).

Ni, W. D.

J. Feng, Z. Wang, Z. Li, and W. D. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, Part B 65, 549–556 (2010).

Nicolas, G.

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant,” Spectrochim. Acta, Part B 65, 734–737 (2010).

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Characterization of coal fly ash components by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1093–1097 (2009).

M. P. Mateo, G. Nicolas, and A. Yanez, “Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations,” Appl. Surf. Sci. 254, 868–872 (2007).

Niessner, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser-plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).

Noda, M.

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 701–709 (2002).

Pan, S.-h.

Y. Liu, J.-d. Lu, P. Li, S.-h. Pan, C.-l. Xie, and M.-c. Jiang, “Determination of carbon content in pulverized coal with laser-induced breakdown spectroscopy by internal standard method,” Proceedings Chinese Society Electrical Engineering 29, 1–44 (2009).

Park, K.

J. H. Kwak, C. Lenth, C. Salb, E. J. Ko, K. W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1105–1110 (2009).

Peng, B. J.

W. D. Zhou, K. X. Li, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25, 1475–1481(2010).

Qian, H. G.

W. D. Zhou, K. X. Li, X. F. Li, H. G. Qian, J. Shao, X. D. Fang, P. H. Xie, and W. Q. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36, 2961–2963 (2011).

W. D. Zhou, L. I. Kexue, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, Part B 65, 420–424 (2010).

Ren, Z. J.

W. D. Zhou, K. X. Li, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25, 1475–1481(2010).

Salb, C.

J. H. Kwak, C. Lenth, C. Salb, E. J. Ko, K. W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1105–1110 (2009).

Schechter, I.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser-plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).

Schone, U.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63, 1177–1182 (2008).

Schroder, H.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser-plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).

Shaddix, C. R.

Shao, J.

W. D. Zhou, K. X. Li, X. F. Li, H. G. Qian, J. Shao, X. D. Fang, P. H. Xie, and W. Q. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36, 2961–2963 (2011).

W. D. Zhou, L. I. Kexue, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, Part B 65, 420–424 (2010).

Shen, K.

L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, “Analysis of pulverized coal by laser-induced breakdown spectroscopy,” Plasma Sci. Tech. 7, 3041–3044 (2005).

Shen, Q. M.

W. D. Zhou, K. X. Li, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25, 1475–1481(2010).

W. D. Zhou, L. I. Kexue, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, Part B 65, 420–424 (2010).

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18, 2573–2578 (2010).

Sickafoose, S. M.

Singh, J. P.

Stewart, M. A.

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73, 1469–1478 (2009).

Tarui, H.

Wallis, F. J.

Walsh, P. M.

Wang, Z.

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182(2011).

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2274–2280 (2011).

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2289–2299 (2011).

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3261–3271 (2011).
[CrossRef]

J. Feng, Z. Wang, Z. Li, and W. D. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, Part B 65, 549–556 (2010).

West, L.

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3261–3271 (2011).
[CrossRef]

Wisbrun, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser-plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).

Wu, G.

L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, “Analysis of pulverized coal by laser-induced breakdown spectroscopy,” Plasma Sci. Tech. 7, 3041–3044 (2005).

Xie, C.-l.

Y. Liu, J.-d. Lu, P. Li, S.-h. Pan, C.-l. Xie, and M.-c. Jiang, “Determination of carbon content in pulverized coal with laser-induced breakdown spectroscopy by internal standard method,” Proceedings Chinese Society Electrical Engineering 29, 1–44 (2009).

Xie, P. H.

Yanez, A.

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant,” Spectrochim. Acta, Part B 65, 734–737 (2010).

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Characterization of coal fly ash components by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1093–1097 (2009).

M. P. Mateo, G. Nicolas, and A. Yanez, “Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations,” Appl. Surf. Sci. 254, 868–872 (2007).

Yoshikawa, N.

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 701–709 (2002).

Yu, L. Y.

L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, “Analysis of pulverized coal by laser-induced breakdown spectroscopy,” Plasma Sci. Tech. 7, 3041–3044 (2005).

Yuan, T.

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2274–2280 (2011).

Yueh, F. Y.

Zheng, H. B.

Zhou, W. D.

W. D. Zhou, K. X. Li, X. F. Li, H. G. Qian, J. Shao, X. D. Fang, P. H. Xie, and W. Q. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36, 2961–2963 (2011).

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18, 2573–2578 (2010).

W. D. Zhou, L. I. Kexue, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, Part B 65, 420–424 (2010).

W. D. Zhou, K. X. Li, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25, 1475–1481(2010).

Anal. Bioanal. Chem. (1)

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3261–3271 (2011).
[CrossRef]

Anal. Chem. (1)

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser-plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).

Appl. Opt. (3)

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

M. P. Mateo, G. Nicolas, and A. Yanez, “Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations,” Appl. Surf. Sci. 254, 868–872 (2007).

J. Anal. At. Spectrom. (4)

W. D. Zhou, K. X. Li, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25, 1475–1481(2010).

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2175–2182(2011).

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, “A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2289–2299 (2011).

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26, 2274–2280 (2011).

Opt. Express (1)

Opt. Lett. (1)

Plasma Sci. Tech. (1)

L. Y. Yu, J. D. Lu, W. Chen, G. Wu, K. Shen, and W. Feng, “Analysis of pulverized coal by laser-induced breakdown spectroscopy,” Plasma Sci. Tech. 7, 3041–3044 (2005).

Proceedings Chinese Society Electrical Engineering (1)

Y. Liu, J.-d. Lu, P. Li, S.-h. Pan, C.-l. Xie, and M.-c. Jiang, “Determination of carbon content in pulverized coal with laser-induced breakdown spectroscopy by internal standard method,” Proceedings Chinese Society Electrical Engineering 29, 1–44 (2009).

Rev. Sci. Instrum. (1)

D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).

Soil Sci. Soc. Am. J. (1)

M. E. Essington, G. V. Melnichenko, M. A. Stewart, and R. A. Hull, “Soil metals analysis using laser-induced breakdown spectroscopy (LIBS),” Soil Sci. Soc. Am. J. 73, 1469–1478 (2009).

Spectrochim. Acta, Part B (8)

J. H. Kwak, C. Lenth, C. Salb, E. J. Ko, K. W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1105–1110 (2009).

W. D. Zhou, L. I. Kexue, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, Part B 65, 420–424 (2010).

J. Feng, Z. Wang, Z. Li, and W. D. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, Part B 65, 549–556 (2010).

D. Body and B. L. Chadwick, “Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system,” Spectrochim. Acta, Part B 56, 725–736 (2001).

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63, 1177–1182 (2008).

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Characterization of coal fly ash components by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 64, 1093–1097 (2009).

T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, “Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant,” Spectrochim. Acta, Part B 65, 734–737 (2010).

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 701–709 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics