Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Correlation of limestone beds using laser-induced breakdown spectroscopy and chemometric analysis

Not Accessible

Your library or personal account may give you access

Abstract

Correlation of limestone beds is commonly based on a variety of features, including the age of the bed, the fossil assemblage, internal sedimentary structures, and the relationship to other units in the stratigraphy. This study uses laser-induced breakdown spectroscopy (LIBS) to correlate 16 limestone beds from Kansas, USA, using three multivariate techniques: (1) soft independent modeling of class analogy (SIMCA) classification, (2) a partial least squares regression, 1 variable (PLS-1) model in which the spectra are regressed against a matrix of the indicator variables 1 through 16, and (3) a matching algorithm that consists of a sequence of binary PLS-1 models. Each gravel-sized limestone particle was analyzed by one LIBS shot; ten spectra were averaged into a single spectrum for chemometric analysis. The entire spectrum (198–969 nm wavelength) is used for multivariate analysis; the only preprocessing is averaging. The SIMCA and PLS-1 models fail to discriminate among the beds, which are chemically similar. In contrast, the matching algorithm has a success rate of 95% to 96%, using half of the spectra to train the model and the other half of the spectra to validate it. However, 100% success can be accomplished by accepting the classification of the majority of spectra for a given bed as the correct classification. This study indicates that LIBS can be applied to complex geologic correlation problems and provide rapid, accurate results.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Comparison of two partial least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument

Ann M. Ollila, Jeremie Lasue, Horton E. Newsom, Rosalie A. Multari, Roger C. Wiens, and Samuel M. Clegg
Appl. Opt. 51(7) B130-B142 (2012)

Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy

Frank C. De Lucia and Jennifer L. Gottfried
Appl. Opt. 51(7) B83-B92 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved