Abstract

We studied the confocal double-pulse laser-induced plasma in the very beginning of its life. It was found that the second laser pulse fired 0.7 to 5 µs after the first pulse produces plasma which, during the first 0 to 20 ns, resembles solar configuration. There is a very hot and compact plasma core that radiates a broad continuum spectrum and a much larger and cooler outer shell. The light from the hot core passes through the cold outer shell and is partly absorbed by atoms and ions that are in ground (or close to ground) states. This produces absorption lines that are similar to Fraunhofer lines observed in the sun spectrum. The possibility to use these absorption lines for new direct and calibration free laser-induced breakdown spectroscopy analytical applications, both in laboratory and industrial conditions, is proved.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-dependent single and double pulse laser-induced breakdown spectroscopy of chromium in liquid

Virendra N. Rai, Fang Yu Yueh, and Jagdish P. Singh
Appl. Opt. 47(31) G21-G29 (2008)

Detection of chloride in reinforced concrete using a dualpulsed laser-induced breakdown spectrometer system: comparative study of the atomic transition lines of Cl I at 594.85 and 837.59 nm

Mohammed Ashraf Gondal, Mohamed Abdulkader Dastageer, Mohammed Maslehuddin, Abdul Jabar Alnehmi, and Omar Saeed Baghabra Al-Amoudi
Appl. Opt. 50(20) 3488-3496 (2011)

Stimulated emission in aluminum laser-induced plasma: kinetic model of population inversion

Igor Gornushkin, Reto Glaus, and Lev Nagli
Appl. Opt. 56(3) 695-701 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription