Abstract

We studied the confocal double-pulse laser-induced plasma in the very beginning of its life. It was found that the second laser pulse fired 0.7 to 5 µs after the first pulse produces plasma which, during the first 0 to 20 ns, resembles solar configuration. There is a very hot and compact plasma core that radiates a broad continuum spectrum and a much larger and cooler outer shell. The light from the hot core passes through the cold outer shell and is partly absorbed by atoms and ions that are in ground (or close to ground) states. This produces absorption lines that are similar to Fraunhofer lines observed in the sun spectrum. The possibility to use these absorption lines for new direct and calibration free laser-induced breakdown spectroscopy analytical applications, both in laboratory and industrial conditions, is proved.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Dekker, 1989).
  2. D. Cremers and L. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  3. A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (LIBS) (Cambridge University, 2006).
  4. J. Singh and S. Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  5. L. Nagli, M. Gaft, and I. Gornushkin, “Comparison of single and double-pulse excitation during the earliest stage of laser induced plasma,” Anal. Bioanal. Chem. 400, 3207–3216 (2011).
    [CrossRef]
  6. M. Gaft, L. Nagli, I. Gornushkin, and Y. Groisman, “Doubly ionized ion emission in laser-induced breakdown spectroscopy in air,” Anal. Bioanal. Chem. 400, 3229–3237 (2011).
    [CrossRef]
  7. P. Diggle, K. Gehring, and R. Mac Farlane, “Atomic absorption and emission in laser produced plasmas,” Phys. Status Solidi A 34, K13–K17 (1976).
    [CrossRef]
  8. P. Burkhalter, G. Mehlman, D. Newman, and B. Ripin, “Techniques for soft x-ray absorption in laser-produced plasmas,” Rev. Sci. Instrum. 61, 2741–2744 (1990).
    [CrossRef]
  9. G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
    [CrossRef]
  10. L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).
  11. J. Rust, J. Nóbrega, C. Calloway, and B. Jones, “Fraunhofer effect atomic absorption spectrometry,” Anal. Chem. 77, 1060–1067 (2005).
    [CrossRef]
  12. J. Costello, J. Mosnier, E. T. Kennedy, P. Carroll, and G. O’Sullivan, “X-UV absorption spectroscopy with laser-produced plasmas: a review,” Phys. Scr. T34, 77–92 (1991).
    [CrossRef]
  13. W. Whitty, J. Costello, E. Kennedy, C. Moloney, and J. Mosnier, “Absorption spectroscopy of an expanding laser produced lithium plasma in the extreme ultraviolet using the dual laser plasma technique,” Appl. Surf. Sci. 127–129, 686–691(1998).
    [CrossRef]
  14. B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
    [CrossRef]
  15. E. T. Kennedy, J. T. Costello, J. Mosnier, and P. van Kampen, “VUV/EUV ionizing radiation and atoms and ions: dual laser plasma investigations,” Radiat. Phys. Chem. 70, 291–321 (2004).
    [CrossRef]
  16. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
    [CrossRef]
  17. M. Ribière, L. Méès, D. Allano, and B. G. Chèron, “Evolutions in time and space of laser ablated species by dual-laser photoabsorption spectroscopy,” J. Appl. Phys. 104, 043302 (2008).
    [CrossRef]
  18. M. Ribière and B. G. Chèron, “Analysis of relaxing laser-induced plasmas by absorption spectroscopy: Toward a new quantitative diagnostic technique,” Spectrochim. Acta B 65, 524–532 (2010).
    [CrossRef]
  19. A. Giacomo, M. Dell’Aglio, D. Bruno, G. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
    [CrossRef]
  20. R. T. Wainner, R. S. Harmonb, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
    [CrossRef]
  21. National Institute of Standards and Technology, NIST Atomic Spectra Database Lines Form, Atomic Spectra Database, 2011, http://physics.nist.gov/PhysRefData/ASD/lines_form.html .
  22. P. Smith, C. Heise, J. Esmond, and R. Kurucz, “Atomic spectral line database built from atomic data files from R. L. Kurucz’s CD-ROM 23,” http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html .
  23. V. Morel, A. Bultel, and B. G. Chèron, “Modeling of thermal and chemical non-equilibrium in a laser-induced aluminum plasma by means of a collisional–radiative model,” Spectrochim. Acta B 65, 830–841 (2010).
    [CrossRef]
  24. I. Gornushkin and U. Panne, “Radiative models of laser-induced plasma and pump–probe diagnostics relevant to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 65, 345–359 (2010).
    [CrossRef]
  25. P. Lotte, A. Malaquias, R. Giannella, M. von Hellermann, P. Nielsen, and C. Walker, “On the motional Stark effect diagnostic for ITER,” in Proceedings of 29th European Physical Society Conference on Plasma Physics and Controlled Fusion (European Physical Society, 2002), Vol. 26B, paper O-2.01.
  26. K. Jakubowska, “Development of visible spectroscopic techniques for applications in plasma diagnostics,” Licentiate thesis (Royal Institute of Technology, 2006).
  27. I. Gornushkin, S. V. Shabanov, N. Omenetto, and J. D. Winefordner, “Nonisothermal asymmetric expansion of laser induced plasmas into vacuum,” J. Appl. Phys. 100, 073304 (2006).
    [CrossRef]
  28. H. W. Drawin and P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, 1965).
  29. H. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).
  30. I. Gornushkin, K. Ampronsah-Manager, B. Smith, N. Omenetto, and J. Winefordner, “Microchip laser-induced breakdown spectroscopy: a preliminary feasibility investigation,” Appl. Spectrosc. 58, 762–769 (2004).
    [CrossRef]
  31. Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 744–749 (2010).
    [CrossRef]
  32. I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B 54, 491–503 (1999).
    [CrossRef]

2011 (2)

L. Nagli, M. Gaft, and I. Gornushkin, “Comparison of single and double-pulse excitation during the earliest stage of laser induced plasma,” Anal. Bioanal. Chem. 400, 3207–3216 (2011).
[CrossRef]

M. Gaft, L. Nagli, I. Gornushkin, and Y. Groisman, “Doubly ionized ion emission in laser-induced breakdown spectroscopy in air,” Anal. Bioanal. Chem. 400, 3229–3237 (2011).
[CrossRef]

2010 (4)

V. Morel, A. Bultel, and B. G. Chèron, “Modeling of thermal and chemical non-equilibrium in a laser-induced aluminum plasma by means of a collisional–radiative model,” Spectrochim. Acta B 65, 830–841 (2010).
[CrossRef]

I. Gornushkin and U. Panne, “Radiative models of laser-induced plasma and pump–probe diagnostics relevant to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 65, 345–359 (2010).
[CrossRef]

M. Ribière and B. G. Chèron, “Analysis of relaxing laser-induced plasmas by absorption spectroscopy: Toward a new quantitative diagnostic technique,” Spectrochim. Acta B 65, 524–532 (2010).
[CrossRef]

Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 744–749 (2010).
[CrossRef]

2008 (2)

A. Giacomo, M. Dell’Aglio, D. Bruno, G. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[CrossRef]

M. Ribière, L. Méès, D. Allano, and B. G. Chèron, “Evolutions in time and space of laser ablated species by dual-laser photoabsorption spectroscopy,” J. Appl. Phys. 104, 043302 (2008).
[CrossRef]

2006 (1)

I. Gornushkin, S. V. Shabanov, N. Omenetto, and J. D. Winefordner, “Nonisothermal asymmetric expansion of laser induced plasmas into vacuum,” J. Appl. Phys. 100, 073304 (2006).
[CrossRef]

2005 (1)

J. Rust, J. Nóbrega, C. Calloway, and B. Jones, “Fraunhofer effect atomic absorption spectrometry,” Anal. Chem. 77, 1060–1067 (2005).
[CrossRef]

2004 (3)

I. Gornushkin, K. Ampronsah-Manager, B. Smith, N. Omenetto, and J. Winefordner, “Microchip laser-induced breakdown spectroscopy: a preliminary feasibility investigation,” Appl. Spectrosc. 58, 762–769 (2004).
[CrossRef]

E. T. Kennedy, J. T. Costello, J. Mosnier, and P. van Kampen, “VUV/EUV ionizing radiation and atoms and ions: dual laser plasma investigations,” Radiat. Phys. Chem. 70, 291–321 (2004).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

2002 (1)

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

2001 (1)

R. T. Wainner, R. S. Harmonb, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

2000 (1)

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

1999 (1)

I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B 54, 491–503 (1999).
[CrossRef]

1998 (1)

W. Whitty, J. Costello, E. Kennedy, C. Moloney, and J. Mosnier, “Absorption spectroscopy of an expanding laser produced lithium plasma in the extreme ultraviolet using the dual laser plasma technique,” Appl. Surf. Sci. 127–129, 686–691(1998).
[CrossRef]

1991 (1)

J. Costello, J. Mosnier, E. T. Kennedy, P. Carroll, and G. O’Sullivan, “X-UV absorption spectroscopy with laser-produced plasmas: a review,” Phys. Scr. T34, 77–92 (1991).
[CrossRef]

1990 (2)

P. Burkhalter, G. Mehlman, D. Newman, and B. Ripin, “Techniques for soft x-ray absorption in laser-produced plasmas,” Rev. Sci. Instrum. 61, 2741–2744 (1990).
[CrossRef]

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

1976 (1)

P. Diggle, K. Gehring, and R. Mac Farlane, “Atomic absorption and emission in laser produced plasmas,” Phys. Status Solidi A 34, K13–K17 (1976).
[CrossRef]

Allano, D.

M. Ribière, L. Méès, D. Allano, and B. G. Chèron, “Evolutions in time and space of laser ablated species by dual-laser photoabsorption spectroscopy,” J. Appl. Phys. 104, 043302 (2008).
[CrossRef]

Ampronsah-Manager, K.

Anzano, J.

I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B 54, 491–503 (1999).
[CrossRef]

Bao-Han, Z.

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

Bruno, D.

A. Giacomo, M. Dell’Aglio, D. Bruno, G. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[CrossRef]

Bultel, A.

V. Morel, A. Bultel, and B. G. Chèron, “Modeling of thermal and chemical non-equilibrium in a laser-induced aluminum plasma by means of a collisional–radiative model,” Spectrochim. Acta B 65, 830–841 (2010).
[CrossRef]

Burkhalter, P.

P. Burkhalter, G. Mehlman, D. Newman, and B. Ripin, “Techniques for soft x-ray absorption in laser-produced plasmas,” Rev. Sci. Instrum. 61, 2741–2744 (1990).
[CrossRef]

Calloway, C.

J. Rust, J. Nóbrega, C. Calloway, and B. Jones, “Fraunhofer effect atomic absorption spectrometry,” Anal. Chem. 77, 1060–1067 (2005).
[CrossRef]

Carroll, P.

J. Costello, J. Mosnier, E. T. Kennedy, P. Carroll, and G. O’Sullivan, “X-UV absorption spectroscopy with laser-produced plasmas: a review,” Phys. Scr. T34, 77–92 (1991).
[CrossRef]

Chèron, B. G.

V. Morel, A. Bultel, and B. G. Chèron, “Modeling of thermal and chemical non-equilibrium in a laser-induced aluminum plasma by means of a collisional–radiative model,” Spectrochim. Acta B 65, 830–841 (2010).
[CrossRef]

M. Ribière and B. G. Chèron, “Analysis of relaxing laser-induced plasmas by absorption spectroscopy: Toward a new quantitative diagnostic technique,” Spectrochim. Acta B 65, 524–532 (2010).
[CrossRef]

M. Ribière, L. Méès, D. Allano, and B. G. Chèron, “Evolutions in time and space of laser ablated species by dual-laser photoabsorption spectroscopy,” J. Appl. Phys. 104, 043302 (2008).
[CrossRef]

Corsi, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Costello, J.

W. Whitty, J. Costello, E. Kennedy, C. Moloney, and J. Mosnier, “Absorption spectroscopy of an expanding laser produced lithium plasma in the extreme ultraviolet using the dual laser plasma technique,” Appl. Surf. Sci. 127–129, 686–691(1998).
[CrossRef]

J. Costello, J. Mosnier, E. T. Kennedy, P. Carroll, and G. O’Sullivan, “X-UV absorption spectroscopy with laser-produced plasmas: a review,” Phys. Scr. T34, 77–92 (1991).
[CrossRef]

Costello, J. T.

E. T. Kennedy, J. T. Costello, J. Mosnier, and P. van Kampen, “VUV/EUV ionizing radiation and atoms and ions: dual laser plasma investigations,” Radiat. Phys. Chem. 70, 291–321 (2004).
[CrossRef]

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

Cremers, D.

D. Cremers and L. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cremers, D. A.

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Dekker, 1989).

Cristoforetti, G.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Danson, C.

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

Dardis, L.

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

Davidson, S. J.

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

De Pascale, O.

A. Giacomo, M. Dell’Aglio, D. Bruno, G. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[CrossRef]

Dell’Aglio, M.

A. Giacomo, M. Dell’Aglio, D. Bruno, G. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[CrossRef]

Diggle, P.

P. Diggle, K. Gehring, and R. Mac Farlane, “Atomic absorption and emission in laser produced plasmas,” Phys. Status Solidi A 34, K13–K17 (1976).
[CrossRef]

Drawin, H. W.

H. W. Drawin and P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, 1965).

Felenbok, P.

H. W. Drawin and P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, 1965).

Freeman, J.

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

French, P. D.

R. T. Wainner, R. S. Harmonb, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Gaft, M.

L. Nagli, M. Gaft, and I. Gornushkin, “Comparison of single and double-pulse excitation during the earliest stage of laser induced plasma,” Anal. Bioanal. Chem. 400, 3207–3216 (2011).
[CrossRef]

M. Gaft, L. Nagli, I. Gornushkin, and Y. Groisman, “Doubly ionized ion emission in laser-induced breakdown spectroscopy in air,” Anal. Bioanal. Chem. 400, 3229–3237 (2011).
[CrossRef]

Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 744–749 (2010).
[CrossRef]

Gaudiuso, G.

A. Giacomo, M. Dell’Aglio, D. Bruno, G. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[CrossRef]

Gehring, K.

P. Diggle, K. Gehring, and R. Mac Farlane, “Atomic absorption and emission in laser produced plasmas,” Phys. Status Solidi A 34, K13–K17 (1976).
[CrossRef]

Giacomo, A.

A. Giacomo, M. Dell’Aglio, D. Bruno, G. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[CrossRef]

Giannella, R.

P. Lotte, A. Malaquias, R. Giannella, M. von Hellermann, P. Nielsen, and C. Walker, “On the motional Stark effect diagnostic for ITER,” in Proceedings of 29th European Physical Society Conference on Plasma Physics and Controlled Fusion (European Physical Society, 2002), Vol. 26B, paper O-2.01.

Giuffrida, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Gornushkin, I.

M. Gaft, L. Nagli, I. Gornushkin, and Y. Groisman, “Doubly ionized ion emission in laser-induced breakdown spectroscopy in air,” Anal. Bioanal. Chem. 400, 3229–3237 (2011).
[CrossRef]

L. Nagli, M. Gaft, and I. Gornushkin, “Comparison of single and double-pulse excitation during the earliest stage of laser induced plasma,” Anal. Bioanal. Chem. 400, 3207–3216 (2011).
[CrossRef]

I. Gornushkin and U. Panne, “Radiative models of laser-induced plasma and pump–probe diagnostics relevant to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 65, 345–359 (2010).
[CrossRef]

I. Gornushkin, S. V. Shabanov, N. Omenetto, and J. D. Winefordner, “Nonisothermal asymmetric expansion of laser induced plasmas into vacuum,” J. Appl. Phys. 100, 073304 (2006).
[CrossRef]

I. Gornushkin, K. Ampronsah-Manager, B. Smith, N. Omenetto, and J. Winefordner, “Microchip laser-induced breakdown spectroscopy: a preliminary feasibility investigation,” Appl. Spectrosc. 58, 762–769 (2004).
[CrossRef]

I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B 54, 491–503 (1999).
[CrossRef]

Griem, H.

H. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).

Groisman, Y.

M. Gaft, L. Nagli, I. Gornushkin, and Y. Groisman, “Doubly ionized ion emission in laser-induced breakdown spectroscopy in air,” Anal. Bioanal. Chem. 400, 3229–3237 (2011).
[CrossRef]

Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 744–749 (2010).
[CrossRef]

Guo-Hong, Y.

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

Harmonb, R. S.

R. T. Wainner, R. S. Harmonb, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Hidalgo, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Hong-Jie, L.

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

Jakubowska, K.

K. Jakubowska, “Development of visible spectroscopic techniques for applications in plasma diagnostics,” Licentiate thesis (Royal Institute of Technology, 2006).

Jia-Min, Y.

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

Ji-Yan, Z.

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

Jones, B.

J. Rust, J. Nóbrega, C. Calloway, and B. Jones, “Fraunhofer effect atomic absorption spectrometry,” Anal. Chem. 77, 1060–1067 (2005).
[CrossRef]

Jun, L.

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

Kennedy, E.

W. Whitty, J. Costello, E. Kennedy, C. Moloney, and J. Mosnier, “Absorption spectroscopy of an expanding laser produced lithium plasma in the extreme ultraviolet using the dual laser plasma technique,” Appl. Surf. Sci. 127–129, 686–691(1998).
[CrossRef]

Kennedy, E. T.

E. T. Kennedy, J. T. Costello, J. Mosnier, and P. van Kampen, “VUV/EUV ionizing radiation and atoms and ions: dual laser plasma investigations,” Radiat. Phys. Chem. 70, 291–321 (2004).
[CrossRef]

J. Costello, J. Mosnier, E. T. Kennedy, P. Carroll, and G. O’Sullivan, “X-UV absorption spectroscopy with laser-produced plasmas: a review,” Phys. Scr. T34, 77–92 (1991).
[CrossRef]

Key, M.

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

King, L.

I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B 54, 491–503 (1999).
[CrossRef]

Legnaioli, S.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Lewis, C.

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

Lewis, S.

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

Lotte, P.

P. Lotte, A. Malaquias, R. Giannella, M. von Hellermann, P. Nielsen, and C. Walker, “On the motional Stark effect diagnostic for ITER,” in Proceedings of 29th European Physical Society Conference on Plasma Physics and Controlled Fusion (European Physical Society, 2002), Vol. 26B, paper O-2.01.

Mac Farlane, R.

P. Diggle, K. Gehring, and R. Mac Farlane, “Atomic absorption and emission in laser produced plasmas,” Phys. Status Solidi A 34, K13–K17 (1976).
[CrossRef]

MacPhee, A.

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

Malaquias, A.

P. Lotte, A. Malaquias, R. Giannella, M. von Hellermann, P. Nielsen, and C. Walker, “On the motional Stark effect diagnostic for ITER,” in Proceedings of 29th European Physical Society Conference on Plasma Physics and Controlled Fusion (European Physical Society, 2002), Vol. 26B, paper O-2.01.

McGuinness, C.

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

McNesby, K. L.

R. T. Wainner, R. S. Harmonb, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Méès, L.

M. Ribière, L. Méès, D. Allano, and B. G. Chèron, “Evolutions in time and space of laser ablated species by dual-laser photoabsorption spectroscopy,” J. Appl. Phys. 104, 043302 (2008).
[CrossRef]

Mehlman, G.

P. Burkhalter, G. Mehlman, D. Newman, and B. Ripin, “Techniques for soft x-ray absorption in laser-produced plasmas,” Rev. Sci. Instrum. 61, 2741–2744 (1990).
[CrossRef]

Meighan, B.

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

Miziolek, A.

A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (LIBS) (Cambridge University, 2006).

Miziolek, A. W.

R. T. Wainner, R. S. Harmonb, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Moloney, C.

W. Whitty, J. Costello, E. Kennedy, C. Moloney, and J. Mosnier, “Absorption spectroscopy of an expanding laser produced lithium plasma in the extreme ultraviolet using the dual laser plasma technique,” Appl. Surf. Sci. 127–129, 686–691(1998).
[CrossRef]

Morel, V.

V. Morel, A. Bultel, and B. G. Chèron, “Modeling of thermal and chemical non-equilibrium in a laser-induced aluminum plasma by means of a collisional–radiative model,” Spectrochim. Acta B 65, 830–841 (2010).
[CrossRef]

Mosnier, J.

E. T. Kennedy, J. T. Costello, J. Mosnier, and P. van Kampen, “VUV/EUV ionizing radiation and atoms and ions: dual laser plasma investigations,” Radiat. Phys. Chem. 70, 291–321 (2004).
[CrossRef]

W. Whitty, J. Costello, E. Kennedy, C. Moloney, and J. Mosnier, “Absorption spectroscopy of an expanding laser produced lithium plasma in the extreme ultraviolet using the dual laser plasma technique,” Appl. Surf. Sci. 127–129, 686–691(1998).
[CrossRef]

J. Costello, J. Mosnier, E. T. Kennedy, P. Carroll, and G. O’Sullivan, “X-UV absorption spectroscopy with laser-produced plasmas: a review,” Phys. Scr. T34, 77–92 (1991).
[CrossRef]

Nagli, L.

M. Gaft, L. Nagli, I. Gornushkin, and Y. Groisman, “Doubly ionized ion emission in laser-induced breakdown spectroscopy in air,” Anal. Bioanal. Chem. 400, 3229–3237 (2011).
[CrossRef]

L. Nagli, M. Gaft, and I. Gornushkin, “Comparison of single and double-pulse excitation during the earliest stage of laser induced plasma,” Anal. Bioanal. Chem. 400, 3207–3216 (2011).
[CrossRef]

Newman, D.

P. Burkhalter, G. Mehlman, D. Newman, and B. Ripin, “Techniques for soft x-ray absorption in laser-produced plasmas,” Rev. Sci. Instrum. 61, 2741–2744 (1990).
[CrossRef]

Nielsen, P.

P. Lotte, A. Malaquias, R. Giannella, M. von Hellermann, P. Nielsen, and C. Walker, “On the motional Stark effect diagnostic for ITER,” in Proceedings of 29th European Physical Society Conference on Plasma Physics and Controlled Fusion (European Physical Society, 2002), Vol. 26B, paper O-2.01.

Nóbrega, J.

J. Rust, J. Nóbrega, C. Calloway, and B. Jones, “Fraunhofer effect atomic absorption spectrometry,” Anal. Chem. 77, 1060–1067 (2005).
[CrossRef]

O’Neill, D.

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

O’Rourke, R.

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

O’Sullivan, G.

J. Costello, J. Mosnier, E. T. Kennedy, P. Carroll, and G. O’Sullivan, “X-UV absorption spectroscopy with laser-produced plasmas: a review,” Phys. Scr. T34, 77–92 (1991).
[CrossRef]

Omenetto, N.

I. Gornushkin, S. V. Shabanov, N. Omenetto, and J. D. Winefordner, “Nonisothermal asymmetric expansion of laser induced plasmas into vacuum,” J. Appl. Phys. 100, 073304 (2006).
[CrossRef]

I. Gornushkin, K. Ampronsah-Manager, B. Smith, N. Omenetto, and J. Winefordner, “Microchip laser-induced breakdown spectroscopy: a preliminary feasibility investigation,” Appl. Spectrosc. 58, 762–769 (2004).
[CrossRef]

I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B 54, 491–503 (1999).
[CrossRef]

Palleschi, V.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (LIBS) (Cambridge University, 2006).

Panne, U.

I. Gornushkin and U. Panne, “Radiative models of laser-induced plasma and pump–probe diagnostics relevant to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 65, 345–359 (2010).
[CrossRef]

Perkins, D.

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

Radziemski, L.

D. Cremers and L. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Radziemski, L. J.

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Dekker, 1989).

Ribière, M.

M. Ribière and B. G. Chèron, “Analysis of relaxing laser-induced plasmas by absorption spectroscopy: Toward a new quantitative diagnostic technique,” Spectrochim. Acta B 65, 524–532 (2010).
[CrossRef]

M. Ribière, L. Méès, D. Allano, and B. G. Chèron, “Evolutions in time and space of laser ablated species by dual-laser photoabsorption spectroscopy,” J. Appl. Phys. 104, 043302 (2008).
[CrossRef]

Ridgeley, A.

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

Ripin, B.

P. Burkhalter, G. Mehlman, D. Newman, and B. Ripin, “Techniques for soft x-ray absorption in laser-produced plasmas,” Rev. Sci. Instrum. 61, 2741–2744 (1990).
[CrossRef]

Rust, J.

J. Rust, J. Nóbrega, C. Calloway, and B. Jones, “Fraunhofer effect atomic absorption spectrometry,” Anal. Chem. 77, 1060–1067 (2005).
[CrossRef]

Salvetti, A.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Schechter, I.

A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (LIBS) (Cambridge University, 2006).

Shabanov, S. V.

I. Gornushkin, S. V. Shabanov, N. Omenetto, and J. D. Winefordner, “Nonisothermal asymmetric expansion of laser induced plasmas into vacuum,” J. Appl. Phys. 100, 073304 (2006).
[CrossRef]

Shaikh, W.

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

Shell, L.

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

Singh, J.

J. Singh and S. Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Smith, B.

I. Gornushkin, K. Ampronsah-Manager, B. Smith, N. Omenetto, and J. Winefordner, “Microchip laser-induced breakdown spectroscopy: a preliminary feasibility investigation,” Appl. Spectrosc. 58, 762–769 (2004).
[CrossRef]

I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B 54, 491–503 (1999).
[CrossRef]

Tallents, G.

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

Thakur, S.

J. Singh and S. Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Tognoni, E.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Turcu, I.

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

Vallebonaet, C.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

van Kampen, P.

E. T. Kennedy, J. T. Costello, J. Mosnier, and P. van Kampen, “VUV/EUV ionizing radiation and atoms and ions: dual laser plasma investigations,” Radiat. Phys. Chem. 70, 291–321 (2004).
[CrossRef]

von Hellermann, M.

P. Lotte, A. Malaquias, R. Giannella, M. von Hellermann, P. Nielsen, and C. Walker, “On the motional Stark effect diagnostic for ITER,” in Proceedings of 29th European Physical Society Conference on Plasma Physics and Controlled Fusion (European Physical Society, 2002), Vol. 26B, paper O-2.01.

Wainner, R. T.

R. T. Wainner, R. S. Harmonb, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Walker, C.

P. Lotte, A. Malaquias, R. Giannella, M. von Hellermann, P. Nielsen, and C. Walker, “On the motional Stark effect diagnostic for ITER,” in Proceedings of 29th European Physical Society Conference on Plasma Physics and Controlled Fusion (European Physical Society, 2002), Vol. 26B, paper O-2.01.

Wen-Hai, Z.

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

Whitty, W.

W. Whitty, J. Costello, E. Kennedy, C. Moloney, and J. Mosnier, “Absorption spectroscopy of an expanding laser produced lithium plasma in the extreme ultraviolet using the dual laser plasma technique,” Appl. Surf. Sci. 127–129, 686–691(1998).
[CrossRef]

Winefordner, J.

Winefordner, J. D.

I. Gornushkin, S. V. Shabanov, N. Omenetto, and J. D. Winefordner, “Nonisothermal asymmetric expansion of laser induced plasmas into vacuum,” J. Appl. Phys. 100, 073304 (2006).
[CrossRef]

I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B 54, 491–503 (1999).
[CrossRef]

Yao-Mei, W.

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

Anal. Bioanal. Chem. (2)

L. Nagli, M. Gaft, and I. Gornushkin, “Comparison of single and double-pulse excitation during the earliest stage of laser induced plasma,” Anal. Bioanal. Chem. 400, 3207–3216 (2011).
[CrossRef]

M. Gaft, L. Nagli, I. Gornushkin, and Y. Groisman, “Doubly ionized ion emission in laser-induced breakdown spectroscopy in air,” Anal. Bioanal. Chem. 400, 3229–3237 (2011).
[CrossRef]

Anal. Chem. (1)

J. Rust, J. Nóbrega, C. Calloway, and B. Jones, “Fraunhofer effect atomic absorption spectrometry,” Anal. Chem. 77, 1060–1067 (2005).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

W. Whitty, J. Costello, E. Kennedy, C. Moloney, and J. Mosnier, “Absorption spectroscopy of an expanding laser produced lithium plasma in the extreme ultraviolet using the dual laser plasma technique,” Appl. Surf. Sci. 127–129, 686–691(1998).
[CrossRef]

Chin. Phys. (1)

L. Hong-Jie, Z. Bao-Han, Z. Ji-Yan, Y. Guo-Hong, Y. Jia-Min, L. Jun, W. Yao-Mei, Z. Wen-Hai, and L. Shell, “Absorption spectrum measurement and simulation of the Mg laser plasma,” Chin. Phys. 19, 362–364 (2002).

J. Appl. Phys. (2)

I. Gornushkin, S. V. Shabanov, N. Omenetto, and J. D. Winefordner, “Nonisothermal asymmetric expansion of laser induced plasmas into vacuum,” J. Appl. Phys. 100, 073304 (2006).
[CrossRef]

M. Ribière, L. Méès, D. Allano, and B. G. Chèron, “Evolutions in time and space of laser ablated species by dual-laser photoabsorption spectroscopy,” J. Appl. Phys. 104, 043302 (2008).
[CrossRef]

J. Phys. B (1)

B. Meighan, C. Danson, L. Dardis, C. Lewis, A. MacPhee, C. McGuinness, R. O’Rourke, W. Shaikh, I. Turcu, and J. T. Costello, “Application of a picosecond laser plasma continuum light source to a dual-laser plasma, photoabsorption experiment,” J. Phys. B 33, 1159–1168 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

G. Tallents, M. Key, A. Ridgeley, W. Shaikh, S. Lewis, D. O’Neill, S. J. Davidson, J. Freeman, and D. Perkins, “An investigation of the x-ray point-source brightness for a short-pulse laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 43, 53–60 (1990).
[CrossRef]

Phys. Scr. (1)

J. Costello, J. Mosnier, E. T. Kennedy, P. Carroll, and G. O’Sullivan, “X-UV absorption spectroscopy with laser-produced plasmas: a review,” Phys. Scr. T34, 77–92 (1991).
[CrossRef]

Phys. Status Solidi A (1)

P. Diggle, K. Gehring, and R. Mac Farlane, “Atomic absorption and emission in laser produced plasmas,” Phys. Status Solidi A 34, K13–K17 (1976).
[CrossRef]

Radiat. Phys. Chem. (1)

E. T. Kennedy, J. T. Costello, J. Mosnier, and P. van Kampen, “VUV/EUV ionizing radiation and atoms and ions: dual laser plasma investigations,” Radiat. Phys. Chem. 70, 291–321 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

P. Burkhalter, G. Mehlman, D. Newman, and B. Ripin, “Techniques for soft x-ray absorption in laser-produced plasmas,” Rev. Sci. Instrum. 61, 2741–2744 (1990).
[CrossRef]

Spectrochim. Acta B (8)

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebonaet, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

M. Ribière and B. G. Chèron, “Analysis of relaxing laser-induced plasmas by absorption spectroscopy: Toward a new quantitative diagnostic technique,” Spectrochim. Acta B 65, 524–532 (2010).
[CrossRef]

A. Giacomo, M. Dell’Aglio, D. Bruno, G. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[CrossRef]

R. T. Wainner, R. S. Harmonb, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

V. Morel, A. Bultel, and B. G. Chèron, “Modeling of thermal and chemical non-equilibrium in a laser-induced aluminum plasma by means of a collisional–radiative model,” Spectrochim. Acta B 65, 830–841 (2010).
[CrossRef]

I. Gornushkin and U. Panne, “Radiative models of laser-induced plasma and pump–probe diagnostics relevant to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 65, 345–359 (2010).
[CrossRef]

Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 744–749 (2010).
[CrossRef]

I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B 54, 491–503 (1999).
[CrossRef]

Other (10)

H. W. Drawin and P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, 1965).

H. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).

P. Lotte, A. Malaquias, R. Giannella, M. von Hellermann, P. Nielsen, and C. Walker, “On the motional Stark effect diagnostic for ITER,” in Proceedings of 29th European Physical Society Conference on Plasma Physics and Controlled Fusion (European Physical Society, 2002), Vol. 26B, paper O-2.01.

K. Jakubowska, “Development of visible spectroscopic techniques for applications in plasma diagnostics,” Licentiate thesis (Royal Institute of Technology, 2006).

National Institute of Standards and Technology, NIST Atomic Spectra Database Lines Form, Atomic Spectra Database, 2011, http://physics.nist.gov/PhysRefData/ASD/lines_form.html .

P. Smith, C. Heise, J. Esmond, and R. Kurucz, “Atomic spectral line database built from atomic data files from R. L. Kurucz’s CD-ROM 23,” http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html .

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Dekker, 1989).

D. Cremers and L. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (LIBS) (Cambridge University, 2006).

J. Singh and S. Thakur, eds., Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Experimental setup. (b) Timing diagram of experimental measurements.

Fig. 2.
Fig. 2.

Fraunhofer lines obtained on metallic Pb sample. (a) Spectral range of 350–430 nm: DP (solid) excited emission with 10 and 30 mJ of energy in first and second laser pulses, respectively, D23μs time interval between the pulses, D1=0 zero time delay between second laser pulse and data acquisition and W7ns gate width; SP (dashed) measured with D1=0ns and W7ns under excitation with laser pulse energy 30 mJ; DP (dotted) excited emission with D1=500ns, D2=3μs and W=1μs. (b) Spectral range of 400 to 410 nm: DP Fraunhofer lines presented in OD Y scale for different D10 (solid line), 5 ns (dashed line), and 15 ns (dotted line).

Fig. 3.
Fig. 3.

Experimental conditions for observation of absorption lines in DP excited plasma. (a) Atoms and ions’ OD dependence on first laser pulse energy. (b) Atoms and ions’ OD dependence on delay time D2 between two laser shots. (c) Atoms and ions’ OD dependence on delay time D1 between second laser shot and data acquisition.

Fig. 4.
Fig. 4.

Fraunhofer lines in Al alloy. (a) 275–315 nm spectral range: SP (dotted), DP (solid) LIP emission measured at D2=3μs, D1=0ns and W7ns and DP (dashed) with D1=500ns D2=3μs and W=1μs. (b) 380–400 nm spectral range: DP measured at D1 of 0 (solid), 5 ns (dashed), 15 ns (dotted) and 40 ns (dotted–dashed), D2=3μs and W7ns.

Fig. 5.
Fig. 5.

Fraunhofer lines in Si. (a) 285–290 nm spectral range: DP (solid), LIP emission at D2=3μs, D1=0ns and W7ns; SP (dashed) D1=0ns and W7ns under excitation with laser pulse energy 30 mJ; DP (dotted) emission at D2=3μs, D1=500ns and W=1μs. (b) Fraunhofer line in 250–255 nm spectral range measured at D2=3μs, D1=0ns, and W7ns; solid line and dotted line is DP excited emission with D2=3μs, D1=500ns, and W=1μs.

Fig. 6.
Fig. 6.

Absorption and emission lines of (a) Ti plasma, (b) Cu plasma, (c) Ca plasma. Solid curves are absorption spectra measured at D2=3μs, D1=0ns, and W7ns. Dashed curves are emission spectra measured at D2=3μs, D1=500ns, and W=1μs.

Fig. 7.
Fig. 7.

Calculated absorption spectra for (a) Si and (b) Pb in DP conditions. D1=0, 10, and 40 ns for Si spectra and D1=5, 15 ns, and 100 ns for Pb.

Fig. 8.
Fig. 8.

Absorption and emission lines of (a) KCl plasma, (b) NCl plasma. Solid curves are absorption spectra measured at D2=3μs, D1=0ns and W7ns. Dashed curves are emission spectra measured at D2=3μs, D1=500ns, and W=1μs.

Fig. 9.
Fig. 9.

Calibration curve for K contents in NaCl measured using absorption spectroscopy.

Tables (3)

Tables Icon

Table 1. Fraunhofer Lines and Spectroscopic Parameters Revealed in the Present Papera

Tables Icon

Table 2. Spectroscopic Data for Theoretical Estimationsa

Tables Icon

Table 3. Initial Conditions in Plasma Computer Simulations

Metrics