Abstract

Identifying and implementing techniques for carbon management has become an important endeavor in the mitigation of global climate change. Two important techniques being pursued are geologic and terrestrial carbon sequestration. With regard to terrestrial sequestration, in order to accurately monitor changes in soil carbon potentially induced by sequestration practices, rapid, cost-effective, and accurate measurements must be developed. Spark-induced breakdown spectroscopy (SIBS) has the potential to be used as a field-deployable method to monitor changes in the concentration of carbon in soil. SIBS spectra in the 248 nm region of eight soils were collected, and the neutral carbon line at 247.85 nm was compared to total carbon concentration determined by standard dry combustion techniques. Additionally, Fe and Si emission lines were evaluated in a multivariate statistical model to evaluate their impacts on the model’s predictive power for total carbon concentrations. The preliminary results indicate that SIBS is a viable method to quantify total carbon levels in soils, obtaining a correlation of (R2=0.972) between measured and predicated carbon in soils. These results show that multivariate analysis can be used to construct a calibration model for SIBS soil spectra.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Ogle, F. J. Breidt, M. D. Eve, and K. Paustian, “Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997,” Glob. Change Biol. 9, 1521–1542 (2003).
    [CrossRef]
  2. W. Kutsch, M. Bahn, and A. Heinemeyer, Soil Carbon Dynamics: An Integrated Methodology (Cambridge University, 2009), p. xi.
  3. T. J. Purakayastha, L. Rudrappa, D. Singh, A. Swarup, and S. Bhadraray, “Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system,” Geoderma 144, 370–378 (2008).
    [CrossRef]
  4. F. G. A. Verheijen, P. H. Bellamy, M. G. Kibblewhite, and J. L. Gaunt, “Organic carbon ranges in arable soils of England and Wales,” Soil Use Manage. 21, 2–9 (2005).
    [CrossRef]
  5. M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
    [CrossRef]
  6. R. J. Scholes and I. R. Noble, “Climate change—storing carbon on land,” Science 294, 1012–1013 (2001).
    [CrossRef]
  7. V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, and V. V. Kiris, “Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis (review),” J. Appl. Spectrosc. 77, 595–608 (2010).
    [CrossRef]
  8. D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
    [CrossRef]
  9. M. Z. Martin, S. D. Wullschleger, C. T. Garten, and A. V. Palumbo, “Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils,” Appl. Opt. 42, 2072–2077 (2003).
    [CrossRef]
  10. M. Z. Martin, S. Wullschleger, and C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” Proc. SPIE 4576, 188–195 (2002).
    [CrossRef]
  11. M. Z. Martin, N. Labbe, N. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
    [CrossRef]
  12. M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
    [CrossRef]
  13. N. G. Glumac, W. K. Dong, and W. M. Jarrell, “Quantitative analysis of soil organic carbon using laser-induced breakdown spectroscopy: an improved method,” Soil Sci. Soc. Am. J. 74, 1922–1928 (2010).
    [CrossRef]
  14. A. J. R. Hunter, S. J. Davis, L. G. Piper, K. W. Holtzclaw, and M. E. Fraser, “Spark-induced breakdown spectroscopy: a new technique for monitoring heavy metals,” Appl. Spectrosc. 54, 575–582 (2000).
    [CrossRef]
  15. A. J. R. Hunter, R. T. Wainner, L. G. Piper, and S. J. Davis, “Rapid field screening of soils for heavy metals with spark-induced breakdown spectroscopy,” Appl. Opt. 42, 2102–2109 (2003).
    [CrossRef]
  16. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).
  17. Soil survey staff, Web Soil Survey, Natural Resources Conservation Service, United States Department of Agriculture, retrieved 25Sept.2011, http://websoilsurvey.nrcs.usda.gov/ .
  18. B. A. Schumacher, “Methods for the determination of total organic carbon (TOC) in soils and sediments,” Ecological Risk Assessment Support Center, U.S. Environmental Protection Agency, Las Vegas, Nev., USA, 2002.
  19. R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.
  20. G. Hanrahan, Environmental Chemometrics: Principles and Modern Applications (CRC Press, 2009).
  21. S. Wold, M. Sjostrom, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intell. Lab. Syst. 58, 109–130 (2001).
    [CrossRef]
  22. P. Geladi and B. R. Kowalski, “Partial least-squares regression—a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
    [CrossRef]
  23. H. Martens and T. Næs, Multivariate Calibration (Wiley, 1989).
  24. Q. Chen, J. Zhao, H. Zhang, and X. Wang, “Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration,” Anal. Chim. Acta 572, 77–84 (2006).
    [CrossRef]
  25. O. Divya and A. K. Mishra, “Combining synchronous fluorescence spectroscopy with multivariate methods for the analysis of petrol-kerosene mixtures,” Talanta 72, 43–48 (2007).
    [CrossRef]
  26. S. Kuriakose, X. Thankappan, H. Joe, and V. Venkataraman, “Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy,” Analyst 135, 2676–2681 (2010).
    [CrossRef]

2010

V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, and V. V. Kiris, “Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis (review),” J. Appl. Spectrosc. 77, 595–608 (2010).
[CrossRef]

M. Z. Martin, N. Labbe, N. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

N. G. Glumac, W. K. Dong, and W. M. Jarrell, “Quantitative analysis of soil organic carbon using laser-induced breakdown spectroscopy: an improved method,” Soil Sci. Soc. Am. J. 74, 1922–1928 (2010).
[CrossRef]

S. Kuriakose, X. Thankappan, H. Joe, and V. Venkataraman, “Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy,” Analyst 135, 2676–2681 (2010).
[CrossRef]

2009

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

2008

T. J. Purakayastha, L. Rudrappa, D. Singh, A. Swarup, and S. Bhadraray, “Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system,” Geoderma 144, 370–378 (2008).
[CrossRef]

2007

O. Divya and A. K. Mishra, “Combining synchronous fluorescence spectroscopy with multivariate methods for the analysis of petrol-kerosene mixtures,” Talanta 72, 43–48 (2007).
[CrossRef]

2006

Q. Chen, J. Zhao, H. Zhang, and X. Wang, “Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration,” Anal. Chim. Acta 572, 77–84 (2006).
[CrossRef]

2005

F. G. A. Verheijen, P. H. Bellamy, M. G. Kibblewhite, and J. L. Gaunt, “Organic carbon ranges in arable soils of England and Wales,” Soil Use Manage. 21, 2–9 (2005).
[CrossRef]

2003

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

S. M. Ogle, F. J. Breidt, M. D. Eve, and K. Paustian, “Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997,” Glob. Change Biol. 9, 1521–1542 (2003).
[CrossRef]

M. Z. Martin, S. D. Wullschleger, C. T. Garten, and A. V. Palumbo, “Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils,” Appl. Opt. 42, 2072–2077 (2003).
[CrossRef]

A. J. R. Hunter, R. T. Wainner, L. G. Piper, and S. J. Davis, “Rapid field screening of soils for heavy metals with spark-induced breakdown spectroscopy,” Appl. Opt. 42, 2102–2109 (2003).
[CrossRef]

2002

M. Z. Martin, S. Wullschleger, and C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” Proc. SPIE 4576, 188–195 (2002).
[CrossRef]

2001

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

R. J. Scholes and I. R. Noble, “Climate change—storing carbon on land,” Science 294, 1012–1013 (2001).
[CrossRef]

S. Wold, M. Sjostrom, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intell. Lab. Syst. 58, 109–130 (2001).
[CrossRef]

2000

1986

P. Geladi and B. R. Kowalski, “Partial least-squares regression—a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
[CrossRef]

Andre, N.

M. Z. Martin, N. Labbe, N. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Bahn, M.

W. Kutsch, M. Bahn, and A. Heinemeyer, Soil Carbon Dynamics: An Integrated Methodology (Cambridge University, 2009), p. xi.

Belkov, M. V.

V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, and V. V. Kiris, “Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis (review),” J. Appl. Spectrosc. 77, 595–608 (2010).
[CrossRef]

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Bellamy, P. H.

F. G. A. Verheijen, P. H. Bellamy, M. G. Kibblewhite, and J. L. Gaunt, “Organic carbon ranges in arable soils of England and Wales,” Soil Use Manage. 21, 2–9 (2005).
[CrossRef]

Bhadraray, S.

T. J. Purakayastha, L. Rudrappa, D. Singh, A. Swarup, and S. Bhadraray, “Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system,” Geoderma 144, 370–378 (2008).
[CrossRef]

Blaisdell, R.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

Breidt, F. J.

S. M. Ogle, F. J. Breidt, M. D. Eve, and K. Paustian, “Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997,” Glob. Change Biol. 9, 1521–1542 (2003).
[CrossRef]

Breshears, D. D.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Brown, J. R.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Burakov, V. S.

V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, and V. V. Kiris, “Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis (review),” J. Appl. Spectrosc. 77, 595–608 (2010).
[CrossRef]

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Catlett, K. M.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Chen, Q.

Q. Chen, J. Zhao, H. Zhang, and X. Wang, “Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration,” Anal. Chim. Acta 572, 77–84 (2006).
[CrossRef]

Conant, R.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

Cremers, D. A.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Davis, S. J.

De Giacomo, A.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Dick, W.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

Divya, O.

O. Divya and A. K. Mishra, “Combining synchronous fluorescence spectroscopy with multivariate methods for the analysis of petrol-kerosene mixtures,” Talanta 72, 43–48 (2007).
[CrossRef]

Dobermann, A.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

Dong, W. K.

N. G. Glumac, W. K. Dong, and W. M. Jarrell, “Quantitative analysis of soil organic carbon using laser-induced breakdown spectroscopy: an improved method,” Soil Sci. Soc. Am. J. 74, 1922–1928 (2010).
[CrossRef]

Ebinger, M. H.

M. Z. Martin, N. Labbe, N. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Eriksson, L.

S. Wold, M. Sjostrom, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intell. Lab. Syst. 58, 109–130 (2001).
[CrossRef]

Eve, M. D.

S. M. Ogle, F. J. Breidt, M. D. Eve, and K. Paustian, “Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997,” Glob. Change Biol. 9, 1521–1542 (2003).
[CrossRef]

Ferris, M. J.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Fraser, M. E.

Garten, C.

M. Z. Martin, S. Wullschleger, and C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” Proc. SPIE 4576, 188–195 (2002).
[CrossRef]

Garten, C. T.

Gaunt, J. L.

F. G. A. Verheijen, P. H. Bellamy, M. G. Kibblewhite, and J. L. Gaunt, “Organic carbon ranges in arable soils of England and Wales,” Soil Use Manage. 21, 2–9 (2005).
[CrossRef]

Geladi, P.

P. Geladi and B. R. Kowalski, “Partial least-squares regression—a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
[CrossRef]

Glumac, N. G.

N. G. Glumac, W. K. Dong, and W. M. Jarrell, “Quantitative analysis of soil organic carbon using laser-induced breakdown spectroscopy: an improved method,” Soil Sci. Soc. Am. J. 74, 1922–1928 (2010).
[CrossRef]

Goddard, K. L.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

Hanrahan, G.

G. Hanrahan, Environmental Chemometrics: Principles and Modern Applications (CRC Press, 2009).

Harris, R. D.

M. Z. Martin, N. Labbe, N. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Heinemeyer, A.

W. Kutsch, M. Bahn, and A. Heinemeyer, Soil Carbon Dynamics: An Integrated Methodology (Cambridge University, 2009), p. xi.

Holtzclaw, K. W.

Hunter, A. J. R.

Izaurralde, C.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

Jarrell, W. M.

N. G. Glumac, W. K. Dong, and W. M. Jarrell, “Quantitative analysis of soil organic carbon using laser-induced breakdown spectroscopy: an improved method,” Soil Sci. Soc. Am. J. 74, 1922–1928 (2010).
[CrossRef]

Joe, H.

S. Kuriakose, X. Thankappan, H. Joe, and V. Venkataraman, “Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy,” Analyst 135, 2676–2681 (2010).
[CrossRef]

Kammerdiener, S. A.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Kibblewhite, M. G.

F. G. A. Verheijen, P. H. Bellamy, M. G. Kibblewhite, and J. L. Gaunt, “Organic carbon ranges in arable soils of England and Wales,” Soil Use Manage. 21, 2–9 (2005).
[CrossRef]

Kiris, V. V.

V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, and V. V. Kiris, “Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis (review),” J. Appl. Spectrosc. 77, 595–608 (2010).
[CrossRef]

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Kowalski, B. R.

P. Geladi and B. R. Kowalski, “Partial least-squares regression—a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
[CrossRef]

Kuriakose, S.

S. Kuriakose, X. Thankappan, H. Joe, and V. Venkataraman, “Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy,” Analyst 135, 2676–2681 (2010).
[CrossRef]

Kutsch, W.

W. Kutsch, M. Bahn, and A. Heinemeyer, Soil Carbon Dynamics: An Integrated Methodology (Cambridge University, 2009), p. xi.

Labbe, N.

M. Z. Martin, N. Labbe, N. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Lamb, M. S.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

Martens, H.

H. Martens and T. Næs, Multivariate Calibration (Wiley, 1989).

Martin, M. Z.

M. Z. Martin, N. Labbe, N. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

M. Z. Martin, S. D. Wullschleger, C. T. Garten, and A. V. Palumbo, “Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils,” Appl. Opt. 42, 2072–2077 (2003).
[CrossRef]

M. Z. Martin, S. Wullschleger, and C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” Proc. SPIE 4576, 188–195 (2002).
[CrossRef]

Meyer, C. W.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

Mishra, A. K.

O. Divya and A. K. Mishra, “Combining synchronous fluorescence spectroscopy with multivariate methods for the analysis of petrol-kerosene mixtures,” Talanta 72, 43–48 (2007).
[CrossRef]

Miziolek, A. W.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

Næs, T.

H. Martens and T. Næs, Multivariate Calibration (Wiley, 1989).

Noble, I. R.

R. J. Scholes and I. R. Noble, “Climate change—storing carbon on land,” Science 294, 1012–1013 (2001).
[CrossRef]

Norfleet, M. L.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

Ogle, S. M.

S. M. Ogle, F. J. Breidt, M. D. Eve, and K. Paustian, “Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997,” Glob. Change Biol. 9, 1521–1542 (2003).
[CrossRef]

Palleschi, V.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

Palumbo, A. V.

Paustian, K.

S. M. Ogle, F. J. Breidt, M. D. Eve, and K. Paustian, “Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997,” Glob. Change Biol. 9, 1521–1542 (2003).
[CrossRef]

Piper, L. G.

Purakayastha, T. J.

T. J. Purakayastha, L. Rudrappa, D. Singh, A. Swarup, and S. Bhadraray, “Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system,” Geoderma 144, 370–378 (2008).
[CrossRef]

Raikov, S. N.

V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, and V. V. Kiris, “Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis (review),” J. Appl. Spectrosc. 77, 595–608 (2010).
[CrossRef]

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Ransom, M.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

Rice, C.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

Robertson, P.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

Rudrappa, L.

T. J. Purakayastha, L. Rudrappa, D. Singh, A. Swarup, and S. Bhadraray, “Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system,” Geoderma 144, 370–378 (2008).
[CrossRef]

Schechter, I.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

Scholes, R. J.

R. J. Scholes and I. R. Noble, “Climate change—storing carbon on land,” Science 294, 1012–1013 (2001).
[CrossRef]

Schumacher, B. A.

B. A. Schumacher, “Methods for the determination of total organic carbon (TOC) in soils and sediments,” Ecological Risk Assessment Support Center, U.S. Environmental Protection Agency, Las Vegas, Nev., USA, 2002.

Singh, D.

T. J. Purakayastha, L. Rudrappa, D. Singh, A. Swarup, and S. Bhadraray, “Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system,” Geoderma 144, 370–378 (2008).
[CrossRef]

Sjostrom, M.

S. Wold, M. Sjostrom, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intell. Lab. Syst. 58, 109–130 (2001).
[CrossRef]

Stuth, J.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

Swarup, A.

T. J. Purakayastha, L. Rudrappa, D. Singh, A. Swarup, and S. Bhadraray, “Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system,” Geoderma 144, 370–378 (2008).
[CrossRef]

Tarasenko, N. V.

V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, and V. V. Kiris, “Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis (review),” J. Appl. Spectrosc. 77, 595–608 (2010).
[CrossRef]

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Thankappan, X.

S. Kuriakose, X. Thankappan, H. Joe, and V. Venkataraman, “Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy,” Analyst 135, 2676–2681 (2010).
[CrossRef]

Thompson, M.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

Unkefer, P. J.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Venkataraman, V.

S. Kuriakose, X. Thankappan, H. Joe, and V. Venkataraman, “Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy,” Analyst 135, 2676–2681 (2010).
[CrossRef]

Verheijen, F. G. A.

F. G. A. Verheijen, P. H. Bellamy, M. G. Kibblewhite, and J. L. Gaunt, “Organic carbon ranges in arable soils of England and Wales,” Soil Use Manage. 21, 2–9 (2005).
[CrossRef]

Wainner, R. T.

Wang, X.

Q. Chen, J. Zhao, H. Zhang, and X. Wang, “Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration,” Anal. Chim. Acta 572, 77–84 (2006).
[CrossRef]

Wold, S.

S. Wold, M. Sjostrom, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intell. Lab. Syst. 58, 109–130 (2001).
[CrossRef]

Wullschleger, S.

M. Z. Martin, S. Wullschleger, and C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” Proc. SPIE 4576, 188–195 (2002).
[CrossRef]

Wullschleger, S. D.

M. Z. Martin, N. Labbe, N. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

M. Z. Martin, S. D. Wullschleger, C. T. Garten, and A. V. Palumbo, “Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils,” Appl. Opt. 42, 2072–2077 (2003).
[CrossRef]

Zhang, H.

Q. Chen, J. Zhao, H. Zhang, and X. Wang, “Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration,” Anal. Chim. Acta 572, 77–84 (2006).
[CrossRef]

Zhao, J.

Q. Chen, J. Zhao, H. Zhang, and X. Wang, “Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration,” Anal. Chim. Acta 572, 77–84 (2006).
[CrossRef]

Anal. Chim. Acta

P. Geladi and B. R. Kowalski, “Partial least-squares regression—a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
[CrossRef]

Q. Chen, J. Zhao, H. Zhang, and X. Wang, “Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration,” Anal. Chim. Acta 572, 77–84 (2006).
[CrossRef]

Analyst

S. Kuriakose, X. Thankappan, H. Joe, and V. Venkataraman, “Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy,” Analyst 135, 2676–2681 (2010).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Chemometr. Intell. Lab. Syst.

S. Wold, M. Sjostrom, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intell. Lab. Syst. 58, 109–130 (2001).
[CrossRef]

Geoderma

T. J. Purakayastha, L. Rudrappa, D. Singh, A. Swarup, and S. Bhadraray, “Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system,” Geoderma 144, 370–378 (2008).
[CrossRef]

Glob. Change Biol.

S. M. Ogle, F. J. Breidt, M. D. Eve, and K. Paustian, “Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997,” Glob. Change Biol. 9, 1521–1542 (2003).
[CrossRef]

J. Appl. Spectrosc.

V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, and V. V. Kiris, “Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis (review),” J. Appl. Spectrosc. 77, 595–608 (2010).
[CrossRef]

J. Environ. Qual.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Proc. SPIE

M. Z. Martin, S. Wullschleger, and C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” Proc. SPIE 4576, 188–195 (2002).
[CrossRef]

Science

R. J. Scholes and I. R. Noble, “Climate change—storing carbon on land,” Science 294, 1012–1013 (2001).
[CrossRef]

Soil Sci. Soc. Am. J.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

M. Z. Martin, N. Labbe, N. Andre, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

N. G. Glumac, W. K. Dong, and W. M. Jarrell, “Quantitative analysis of soil organic carbon using laser-induced breakdown spectroscopy: an improved method,” Soil Sci. Soc. Am. J. 74, 1922–1928 (2010).
[CrossRef]

Soil Use Manage.

F. G. A. Verheijen, P. H. Bellamy, M. G. Kibblewhite, and J. L. Gaunt, “Organic carbon ranges in arable soils of England and Wales,” Soil Use Manage. 21, 2–9 (2005).
[CrossRef]

Spectrochim. Acta B

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Talanta

O. Divya and A. K. Mishra, “Combining synchronous fluorescence spectroscopy with multivariate methods for the analysis of petrol-kerosene mixtures,” Talanta 72, 43–48 (2007).
[CrossRef]

Other

H. Martens and T. Næs, Multivariate Calibration (Wiley, 1989).

W. Kutsch, M. Bahn, and A. Heinemeyer, Soil Carbon Dynamics: An Integrated Methodology (Cambridge University, 2009), p. xi.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

Soil survey staff, Web Soil Survey, Natural Resources Conservation Service, United States Department of Agriculture, retrieved 25Sept.2011, http://websoilsurvey.nrcs.usda.gov/ .

B. A. Schumacher, “Methods for the determination of total organic carbon (TOC) in soils and sediments,” Ecological Risk Assessment Support Center, U.S. Environmental Protection Agency, Las Vegas, Nev., USA, 2002.

R. Blaisdell, R. Conant, W. Dick, A. Dobermann, C. Izaurralde, M. Ransom, C. Rice, P. Robertson, J. Stuth, and M. Thompson, “Recommended procedures for collecting, processing, and analyzing soil samples in CASMGS research plots,” Consortium for Agricultural Soils Mitigation of Greenhouse Gases, 2003.

G. Hanrahan, Environmental Chemometrics: Principles and Modern Applications (CRC Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the SIBS instrumentation.

Fig. 2.
Fig. 2.

SIBS spectrum of soil 4 from 245 to 256 nm. Principal emission features in this region are C (I) (247.85 nm), Fe (I) (248 to 249 nm) and Si (I) (250 to 253 nm). These lines were used to evaluate the prediction models.

Fig. 3.
Fig. 3.

Loadings plot from the first latent variable (LV1) from SIBS, capturing 50.14% of the variance. A comparison is made between the LV1 regression coefficient and the spectral data in the 248 nm region. The most weighted wavelength in the spectrum corresponds to the neutral C line at 247.85 nm.

Fig. 4.
Fig. 4.

Plot of calibration error (RMSEC) and cross-validation error (RMSECV) as a function of the number of latent variables retained in the PLS model for carbon. The data set included a summation of 10 shots with 10 data points per soil sample.

Fig. 5.
Fig. 5.

Plot of measured versus predicted total carbon from eight samples using SIBS. Use of carbon only with three LVs, with a summation of 10 shots and 10 data points per soil sample.

Tables (3)

Tables Icon

Table 1. Soil Location, Description, and Rating of Eight Soil Samples

Tables Icon

Table 2. Percent of Total Carbon Determined by CHN Analysis: Elemental Results of Fe and Si Determined through HF Digest Followed by ICP-OES

Tables Icon

Table 3. Summary Table of Regression Model, which Includes Elements in the Model, C Prediction Error, and RMSECV When Using Two and Three LVsa

Metrics